Spaces:
Runtime error
Runtime error
File size: 9,130 Bytes
6da47c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
"""Minimal standalone demo wiring for SAM 3D Body with Rerun visualization."""
import os
from dataclasses import dataclass
from glob import glob
from pathlib import Path
from typing import Literal, TypedDict
import cv2
import numpy as np
import rerun as rr
import rerun.blueprint as rrb
import torch
from jaxtyping import Float32, UInt8
from monopriors.relative_depth_models import BaseRelativePredictor, RelativeDepthPrediction, get_relative_predictor
from numpy import ndarray
from serde import serde
from simplecv.rerun_log_utils import RerunTyroConfig
from torch import Tensor
from tqdm import tqdm
from transformers.models.sam3 import Sam3Model, Sam3Processor
from yacs.config import CfgNode
from sam3d_body.api.visualization import create_view, set_annotation_context, visualize_sample
from sam3d_body.build_models import load_sam_3d_body, load_sam_3d_body_hf
from sam3d_body.models.meta_arch import SAM3DBody
from sam3d_body.sam_3d_body_estimator import FinalPosePrediction, SAM3DBodyEstimator
class SAM3ResultsDict(TypedDict):
"""Torch-format outputs returned directly by ``Sam3Processor`` post-processing."""
scores: Float32[Tensor, "n"]
boxes: Float32[Tensor, "n 4"]
masks: Float32[Tensor, "n h w"]
@serde()
class SAM3Results:
scores: Float32[ndarray, "n"]
"""Per-instance confidence scores ``[N]``."""
boxes: Float32[ndarray, "n 4"]
"""Bounding boxes in XYXY pixel coordinates ``[N, 4]``."""
masks: Float32[ndarray, "n h w"]
"""Probability masks for each detection ``[N, H, W]`` (float32 in ``[0, 1]``)."""
@dataclass
class SAM3Config:
"""Configuration for loading a SAM3 checkpoint and selecting device."""
device: Literal["cpu", "cuda"] = "cuda"
"""Computation device passed to the Hugging Face SAM3 model."""
sam3_checkpoint: str = "facebook/sam3"
"""Model identifier or path accepted by ``Sam3Model.from_pretrained``."""
class SAM3Predictor:
"""Lightweight wrapper around the SAM3 model for single-image inference."""
def __init__(self, config: SAM3Config):
self.config = config
self.sam3_model = Sam3Model.from_pretrained(config.sam3_checkpoint).to(config.device)
self.sam3_processor = Sam3Processor.from_pretrained(config.sam3_checkpoint)
def predict_single_image(self, rgb_hw3: UInt8[ndarray, "h w 3"], text: str = "person") -> SAM3Results:
"""Run SAM3 instance segmentation on one RGB image.
Args:
rgb_hw3: Input image in RGB order with dtype ``uint8`` and shape ``[H, W, 3]``.
text: Optional prompt used by SAM3's text-conditioned decoder (default: ``"person"``).
Returns:
``SAM3Results`` with NumPy copies of scores, XYXY boxes, and binary masks.
"""
inputs = self.sam3_processor(
images=rgb_hw3,
text=text,
return_tensors="pt",
).to(self.config.device)
with torch.no_grad():
outputs = self.sam3_model(**inputs)
results: SAM3ResultsDict = self.sam3_processor.post_process_instance_segmentation(
outputs, threshold=0.5, mask_threshold=0.5, target_sizes=inputs.get("original_sizes").tolist()
)[0]
mask_probs: Float32[ndarray, "n h w"] = results["masks"].detach().cpu().numpy().astype(np.float32, copy=False)
return SAM3Results(
scores=results["scores"].detach().cpu().numpy().astype(np.float32, copy=False),
boxes=results["boxes"].detach().cpu().numpy().astype(np.float32, copy=False),
masks=mask_probs,
)
@dataclass
class SAM3DBodyE2EConfig:
"""Bundle of sub-configurations required for the end-to-end demo."""
sam3_config: SAM3Config
"""Settings for the underlying SAM3 detector."""
fov_estimator: Literal["MogeV1Predictor"] = "MogeV1Predictor"
"""Identifier of the relative depth/FOV estimator to load."""
mhr_path: Path = Path("checkpoints/sam-3d-body-dinov3/assets/mhr_model.pt")
"""Path to the MHR mesh/pose asset file required by the head network."""
checkpoint_path: Path = Path("checkpoints/sam-3d-body-dinov3/model.ckpt")
"""Core SAM 3D Body model checkpoint (.ckpt)."""
class SAM3DBodyE2E:
"""Convenience facade that chains detection, FOV estimation, and 3D reconstruction."""
def __init__(self, config: SAM3DBodyE2EConfig):
self.sam3_predictor = SAM3Predictor(config.sam3_config)
self.fov_predictor: BaseRelativePredictor = get_relative_predictor(config.fov_estimator)(device="cuda")
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# load_output: tuple[SAM3DBody, CfgNode] = load_sam_3d_body(
# config.checkpoint_path,
# device=device,
# mhr_path=config.mhr_path,
# )
load_output: tuple[SAM3DBody, CfgNode] = load_sam_3d_body_hf(repo_id="facebook/sam-3d-body-dinov3")
model: SAM3DBody = load_output[0]
self.sam3d_body_estimator = SAM3DBodyEstimator(
sam_3d_body_model=model,
)
def predict_single_image(
self, rgb_hw3: UInt8[ndarray, "h w 3"]
) -> tuple[list[FinalPosePrediction], RelativeDepthPrediction]:
"""Estimate 3D poses for a single frame.
Pipeline:
1. Use the configured relative-depth predictor to derive camera intrinsics ``K_33``.
2. Run SAM3 to obtain person masks and boxes.
3. Feed detections and intrinsics into ``SAM3DBodyEstimator`` for per-person 3D bodies.
Args:
rgb_hw3: RGB image with shape ``[H, W, 3]`` and dtype ``uint8``.
Returns:
A list of ``FinalPosePrediction`` entries—one per detected person.
"""
# estimate the camera intrinsics
relative_pred: RelativeDepthPrediction = self.fov_predictor(rgb=rgb_hw3, K_33=None)
K_33: Float32[ndarray, "3 3"] = relative_pred.K_33
sam3_results: SAM3Results = self.sam3_predictor.predict_single_image(rgb_hw3)
outputs: list[FinalPosePrediction] = self.sam3d_body_estimator.process_one_image(
rgb_hw3,
xyxy=sam3_results.boxes,
masks=sam3_results.masks,
masks_score=sam3_results.scores,
K_33=K_33,
)
return outputs, relative_pred
@dataclass(slots=True)
class Sam3DBodyDemoConfig:
"""Configuration for the standalone demo runner."""
rr_config: RerunTyroConfig
"""Viewer/runtime options for Rerun (window layout, recording, etc.)."""
sam3_e2e_config: SAM3DBodyE2EConfig
"""Configuration for the end-to-end SAM 3D Body model."""
image_folder: Path | None = None
"""Directory containing input images to process."""
image_path: Path | None = None
"""Path to a single input image to process."""
max_frames: int | None = None
"""Optional limit on the number of images to process; ``None`` processes all images."""
def main(cfg: Sam3DBodyDemoConfig):
"""Run the Rerun-enabled demo on a folder or single image.
Args:
cfg: Aggregated configuration containing Rerun settings, SAM3 model options,
and input image selection.
"""
# Setup Rerun
parent_log_path = Path("/world")
set_annotation_context()
view: rrb.ContainerLike = create_view()
blueprint = rrb.Blueprint(view, collapse_panels=True)
rr.send_blueprint(blueprint)
rr.log("/", rr.ViewCoordinates.RDF, static=True)
if cfg.image_path is not None:
images_list = [str(cfg.image_path)]
elif cfg.image_folder is not None:
image_extensions: list[str] = [
"*.jpg",
"*.jpeg",
"*.png",
"*.gif",
"*.bmp",
"*.tiff",
"*.webp",
]
images_list: list[str] = sorted(
[image for ext in image_extensions for image in glob(os.path.join(cfg.image_folder, ext))]
)
else:
raise ValueError("Either image_path or image_folder must be specified.")
# load end to end model
sam3D_body_e2e = SAM3DBodyE2E(cfg.sam3_e2e_config)
for idx, image_path in enumerate(tqdm(images_list)):
rr.set_time(timeline="image_sequence", sequence=idx)
# load image and convert to RGB
bgr_hw3: UInt8[ndarray, "h w 3"] = cv2.imread(image_path)
rgb_hw3: UInt8[ndarray, "h w 3"] = cv2.cvtColor(bgr_hw3, cv2.COLOR_BGR2RGB)
outputs: tuple[list[FinalPosePrediction], RelativeDepthPrediction] = sam3D_body_e2e.predict_single_image(
rgb_hw3
)
pred_list: list[FinalPosePrediction] = outputs[0]
relative_pred: RelativeDepthPrediction = outputs[1]
if len(pred_list) == 0:
# Detector/FOV failed on this frame; avoid crashing the visualization step.
print(f"[warn] No detections for {image_path}; skipping.")
continue
visualize_sample(
pred_list=pred_list,
rgb_hw3=rgb_hw3,
parent_log_path=parent_log_path,
faces=sam3D_body_e2e.sam3d_body_estimator.faces,
relative_depth_pred=relative_pred,
)
|