Spaces:
Runtime error
Runtime error
File size: 18,522 Bytes
6da47c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
from pathlib import Path
import cv2
import numpy as np
import open3d as o3d
import rerun as rr
import rerun.blueprint as rrb
from jaxtyping import Bool, Float32, Int, UInt8
from monopriors.depth_utils import depth_edges_mask
from monopriors.relative_depth_models import RelativeDepthPrediction
from numpy import ndarray
from simplecv.camera_parameters import Extrinsics, Intrinsics, PinholeParameters
from simplecv.ops.pc_utils import estimate_voxel_size
from simplecv.rerun_log_utils import log_pinhole
from sam3d_body.metadata.mhr70 import MHR70_ID2NAME, MHR70_IDS, MHR70_LINKS
from sam3d_body.sam_3d_body_estimator import FinalPosePrediction
BOX_PALETTE: UInt8[np.ndarray, "n_colors 4"] = np.array(
[
[255, 99, 71, 255], # tomato
[65, 105, 225, 255], # royal blue
[60, 179, 113, 255], # medium sea green
[255, 215, 0, 255], # gold
[138, 43, 226, 255], # blue violet
[255, 140, 0, 255], # dark orange
[220, 20, 60, 255], # crimson
[70, 130, 180, 255], # steel blue
],
dtype=np.uint8,
)
# Use a separate id range for segmentation classes to avoid clobbering the person class (id=0).
SEG_CLASS_OFFSET = 1000 # background = 1000, persons start at 1001
MAX_POINT_CLOUD_POINTS = 50_000
MIN_DEPTH_CONFIDENCE = 0.5
def filter_out_of_bounds(
uv: Float32[ndarray, "n_points 2"],
h: int,
w: int,
xyz_cam: Float32[ndarray, "n_points 3"] | None = None,
) -> Float32[ndarray, "n_points 2"]:
"""Return a copy of ``uv`` with off-screen (and optional behind-camera) points masked.
Args:
uv: Pixel coordinates ``[N, 2]`` in (u, v) order.
h: Image height in pixels.
w: Image width in pixels.
xyz_cam: Optional camera-frame coordinates ``[N, 3]`` to mask points with negative ``z``.
Returns:
Copy of ``uv`` where out-of-bounds rows are set to ``NaN`` so Rerun hides them.
"""
uv_filtered: Float32[ndarray, "n_points 2"] = np.asarray(uv, dtype=np.float32).copy()
out_of_bounds: Bool[ndarray, "n_points"] = np.logical_or(uv_filtered[:, 0] >= float(w), uv_filtered[:, 0] < 0.0)
out_of_bounds = np.logical_or(out_of_bounds, uv_filtered[:, 1] >= float(h))
out_of_bounds = np.logical_or(out_of_bounds, uv_filtered[:, 1] < 0.0)
if xyz_cam is not None:
out_of_bounds = np.logical_or(out_of_bounds, xyz_cam[:, 2] < 0.0)
uv_filtered[out_of_bounds, :] = np.nan
return uv_filtered
def compute_vertex_normals(
verts: Float32[ndarray, "n_verts 3"],
faces: Int[ndarray, "n_faces 3"],
eps: float = 1e-12,
) -> Float32[ndarray, "n_verts 3"]:
"""Compute per-vertex normals for a single mesh.
Args:
verts: Float32 array of vertex positions with shape ``(n_verts, 3)``.
faces: Int array of triangle indices with shape ``(n_faces, 3)``.
eps: Small epsilon to avoid division by zero when normalizing.
Returns:
Float32 array of unit vertex normals with shape ``(n_verts, 3)``; zeros for degenerate vertices.
"""
# Expand faces to vertex triplets and fetch their positions.
faces_i: Int[ndarray, "n_faces 3"] = faces.astype(np.int64)
v0: Float32[ndarray, "n_faces 3"] = verts[faces_i[:, 0]]
v1: Float32[ndarray, "n_faces 3"] = verts[faces_i[:, 1]]
v2: Float32[ndarray, "n_faces 3"] = verts[faces_i[:, 2]]
# Face normal = cross(edge1, edge2).
e1: Float32[ndarray, "n_faces 3"] = v1 - v0
e2: Float32[ndarray, "n_faces 3"] = v2 - v0
face_normals: Float32[ndarray, "n_faces 3"] = np.cross(e1, e2)
# Accumulate each face normal into its three vertices with a vectorized scatter-add.
vertex_normals: Float32[ndarray, "n_verts 3"] = np.zeros_like(verts, dtype=np.float32)
flat_indices: Int[ndarray, "n_faces3"] = faces_i.reshape(-1)
face_normals_repeated: Float32[ndarray, "n_faces3 3"] = np.repeat(face_normals, 3, axis=0)
np.add.at(vertex_normals, flat_indices, face_normals_repeated)
norms: Float32[ndarray, "n_verts 1"] = np.linalg.norm(vertex_normals, axis=-1, keepdims=True)
denom: Float32[ndarray, "n_verts 1"] = np.maximum(norms, eps).astype(np.float32)
vn_unit: Float32[ndarray, "n_verts 3"] = (vertex_normals / denom).astype(np.float32)
mask: ndarray = norms > eps
vn_unit = np.where(mask, vn_unit, np.float32(0.0))
return vn_unit
def export_meshes_to_glb(
pred_list: list[FinalPosePrediction],
faces: Int[ndarray, "n_faces 3"],
output_dir: Path,
box_palette: UInt8[ndarray, "n_colors 4"] = BOX_PALETTE,
center_mesh: bool = True,
) -> list[Path]:
"""Write one GLB per predicted mesh and return the file paths."""
output_dir.mkdir(parents=True, exist_ok=True)
written_paths: list[Path] = []
faces_int: Int[ndarray, "n_faces 3"] = np.ascontiguousarray(faces, dtype=np.int32)
for idx, output in enumerate(pred_list):
verts_cam: Float32[ndarray, "n_verts 3"] = np.ascontiguousarray(output.pred_vertices, dtype=np.float32)
cam_t: Float32[ndarray, "3"] = np.ascontiguousarray(output.pred_cam_t, dtype=np.float32)
# Convert to world coordinates to mirror the viewer logging convention (cam → world via translation).
verts_world: Float32[ndarray, "n_verts 3"] = np.ascontiguousarray(verts_cam + cam_t, dtype=np.float32)
verts_export: Float32[ndarray, "n_verts 3"]
verts_export = verts_world - np.mean(verts_world, axis=0, keepdims=True) if center_mesh else verts_world
vertex_normals: Float32[ndarray, "n_verts 3"] = compute_vertex_normals(verts_export, faces_int)
mesh = o3d.geometry.TriangleMesh()
mesh.vertices = o3d.utility.Vector3dVector(verts_export.astype(np.float64))
mesh.triangles = o3d.utility.Vector3iVector(faces_int.astype(np.int32))
mesh.vertex_normals = o3d.utility.Vector3dVector(vertex_normals.astype(np.float64))
color: Float32[ndarray, "3"] = box_palette[idx % len(box_palette), :3].astype(np.float32) / 255.0
vertex_colors: Float32[ndarray, "n_verts 3"] = np.repeat(color[np.newaxis, :], verts_export.shape[0], axis=0)
mesh.vertex_colors = o3d.utility.Vector3dVector(vertex_colors.astype(np.float64))
glb_path: Path = output_dir / f"person_{idx:02d}.glb"
success: bool = bool(
o3d.io.write_triangle_mesh(
str(glb_path),
mesh,
write_ascii=False,
write_vertex_normals=True,
write_vertex_colors=True,
)
)
if not success:
fallback_path: Path = output_dir / f"person_{idx:02d}.ply"
success = bool(
o3d.io.write_triangle_mesh(
str(fallback_path),
mesh,
write_ascii=False,
write_vertex_normals=True,
write_vertex_colors=True,
)
)
if success:
glb_path = fallback_path
if success:
written_paths.append(glb_path)
return written_paths
def set_annotation_context() -> None:
"""Register MHR-70 semantic metadata so subsequent logs show names/edges and mask colors."""
# Base person class (for keypoints / boxes) uses id=0 (original), segmentation uses 1000+ to avoid clashes.
person_class = rr.ClassDescription(
info=rr.AnnotationInfo(id=0, label="Person", color=(0, 0, 255)),
keypoint_annotations=[rr.AnnotationInfo(id=idx, label=name) for idx, name in MHR70_ID2NAME.items()],
keypoint_connections=MHR70_LINKS,
)
# Segmentation classes: id=SEG_CLASS_OFFSET background, ids SEG_CLASS_OFFSET+1..n for each instance color.
seg_classes: list[rr.ClassDescription] = [
rr.ClassDescription(info=rr.AnnotationInfo(id=SEG_CLASS_OFFSET, label="Background", color=(64, 64, 64))),
]
for idx, color in enumerate(BOX_PALETTE[:, :3].tolist(), start=1):
seg_classes.append(
rr.ClassDescription(
info=rr.AnnotationInfo(
id=SEG_CLASS_OFFSET + idx, label=f"Person-{idx}", color=tuple(int(c) for c in color)
),
)
)
rr.log(
"/",
rr.AnnotationContext([person_class, *seg_classes]),
static=True,
)
def visualize_sample(
pred_list: list[FinalPosePrediction],
rgb_hw3: UInt8[ndarray, "h w 3"],
parent_log_path: Path,
faces: Int[ndarray, "n_faces 3"],
relative_depth_pred: RelativeDepthPrediction | None = None,
) -> None:
h: int = rgb_hw3.shape[0]
w: int = rgb_hw3.shape[1]
cam_log_path: Path = parent_log_path / "cam"
pinhole_log_path: Path = cam_log_path / "pinhole"
image_log_path: Path = pinhole_log_path / "image"
pred_log_path: Path = pinhole_log_path / "pred"
# log the pinhole camera parameters (assume fx=fy and center at image center)
focal_length: float = float(pred_list[0].focal_length)
intri: Intrinsics = Intrinsics(
camera_conventions="RDF",
fl_x=focal_length,
fl_y=focal_length,
cx=float(w) / 2.0,
cy=float(h) / 2.0,
height=h,
width=w,
)
world_T_cam: Float32[ndarray, "4 4"] = np.eye(4, dtype=np.float32)
extri: Extrinsics = Extrinsics(
world_R_cam=world_T_cam[:3, :3],
world_t_cam=world_T_cam[:3, 3],
)
pinhole_params: PinholeParameters = PinholeParameters(intrinsics=intri, extrinsics=extri, name="pinhole")
log_pinhole(camera=pinhole_params, cam_log_path=cam_log_path)
# clear the previous pred logs
rr.log(f"{pred_log_path}", rr.Clear(recursive=True))
rr.log(f"{image_log_path}", rr.Image(rgb_hw3, color_model=rr.ColorModel.RGB).compress(jpeg_quality=90))
# Build per-pixel maps (SEG_CLASS_OFFSET = background). Also build RGBA overlay with transparent background.
seg_map: Int[ndarray, "h w"] = np.full((h, w), SEG_CLASS_OFFSET, dtype=np.int32)
seg_overlay: UInt8[ndarray, "h w 4"] = np.zeros((h, w, 4), dtype=np.uint8)
human_mask: Bool[ndarray, "h w"] = np.zeros((h, w), dtype=bool)
mesh_root_path: Path = parent_log_path / "pred"
rr.log(str(mesh_root_path), rr.Clear(recursive=True))
for i, output in enumerate(pred_list):
box_color: UInt8[ndarray, "1 4"] = BOX_PALETTE[i % len(BOX_PALETTE)].reshape(1, 4)
rr.log(
f"{pred_log_path}/bbox_{i}",
rr.Boxes2D(
array=output.bbox,
array_format=rr.Box2DFormat.XYXY,
class_ids=0,
colors=box_color,
show_labels=True,
),
)
kpts_cam: Float32[ndarray, "n_kpts 3"] = np.ascontiguousarray(output.pred_keypoints_3d, dtype=np.float32)
kpts_uv: Float32[ndarray, "n_kpts 2"] = np.ascontiguousarray(output.pred_keypoints_2d, dtype=np.float32)
kpts_uv_in_bounds: Float32[ndarray, "n_kpts 2"] = filter_out_of_bounds(
uv=kpts_uv,
h=h,
w=w,
xyz_cam=None, # Depth sign from the model can be negative; only cull by image bounds.
)
rr.log(
f"{pred_log_path}/uv_{i}",
rr.Points2D(
positions=kpts_uv_in_bounds,
keypoint_ids=MHR70_IDS,
class_ids=0,
colors=(0, 255, 0),
),
)
# Accumulate segmentation masks (if present) into a single segmentation image.
mask = output.mask
if mask is not None:
mask_arr: ndarray = np.asarray(mask).squeeze()
if mask_arr.shape != seg_map.shape:
mask_arr = cv2.resize(
mask_arr.astype(np.uint8), (seg_map.shape[1], seg_map.shape[0]), interpolation=cv2.INTER_NEAREST
)
mask_bool = mask_arr.astype(bool)
human_mask = np.logical_or(human_mask, mask_bool)
seg_id = SEG_CLASS_OFFSET + i + 1 # keep person class (0) separate from seg classes
seg_map = np.where(mask_bool, np.uint16(seg_id), seg_map)
# Color overlay for this instance, background stays transparent.
color = BOX_PALETTE[i % len(BOX_PALETTE), :3]
seg_overlay[mask_bool] = np.array([color[0], color[1], color[2], 120], dtype=np.uint8)
# Log 3D keypoints in world coordinates
cam_t: Float32[ndarray, "3"] = np.ascontiguousarray(output.pred_cam_t, dtype=np.float32)
kpts_world: Float32[ndarray, "n_kpts 3"] = np.ascontiguousarray(kpts_cam + cam_t, dtype=np.float32)
rr.log(
f"{parent_log_path}/pred/kpts3d_{i}",
rr.Points3D(
positions=kpts_world,
keypoint_ids=MHR70_IDS,
class_ids=0,
colors=(0, 255, 0),
),
)
# Log the full-body mesh in world coordinates so it shows in 3D
verts_cam: Float32[ndarray, "n_verts 3"] = np.ascontiguousarray(output.pred_vertices, dtype=np.float32)
verts_world: Float32[ndarray, "n_verts 3"] = np.ascontiguousarray(verts_cam + cam_t, dtype=np.float32)
faces_int: Int[ndarray, "n_faces 3"] = np.ascontiguousarray(faces, dtype=np.int32)
vertex_normals: Float32[ndarray, "n_verts 3"] = compute_vertex_normals(verts_world, faces_int)
rr.log(
f"{parent_log_path}/pred/mesh_{i}",
rr.Mesh3D(
vertex_positions=verts_world,
triangle_indices=faces_int,
vertex_normals=vertex_normals,
albedo_factor=(
float(box_color[0, 0]) / 255.0,
float(box_color[0, 1]) / 255.0,
float(box_color[0, 2]) / 255.0,
0.35,
),
),
)
# Log segmentation ids (full map) and an RGBA overlay with transparent background.
if np.any(seg_map != SEG_CLASS_OFFSET):
rr.log(f"{pred_log_path}/segmentation_ids", rr.SegmentationImage(seg_map))
rr.log(f"{pred_log_path}/segmentation_overlay", rr.Image(seg_overlay, color_model=rr.ColorModel.RGBA))
# Optionally log depth and a background-only point cloud (for 3D view only).
if relative_depth_pred is not None:
depth_hw: Float32[ndarray, "h w"] = np.asarray(relative_depth_pred.depth, dtype=np.float32)
conf_hw: Float32[ndarray, "h w"] = np.asarray(relative_depth_pred.confidence, dtype=np.float32)
if depth_hw.shape != (h, w):
depth_hw = cv2.resize(depth_hw, (w, h), interpolation=cv2.INTER_NEAREST)
if conf_hw.shape != (h, w):
conf_hw = cv2.resize(conf_hw, (w, h), interpolation=cv2.INTER_NEAREST)
depth_hw = np.nan_to_num(depth_hw, nan=0.0, posinf=0.0, neginf=0.0)
# Remove flying pixels along depth discontinuities.
edges_mask: Bool[ndarray, "h w"] = depth_edges_mask(depth_hw, threshold=0.01)
depth_hw = depth_hw * np.logical_not(edges_mask)
# Remove low-confidence pixels.
conf_mask: Bool[ndarray, "h w"] = conf_hw >= MIN_DEPTH_CONFIDENCE
depth_hw = depth_hw * conf_mask
background_mask: Bool[ndarray, "h w"] = np.logical_not(human_mask)
depth_bg: Float32[ndarray, "h w"] = depth_hw * background_mask
# Log depth image (not referenced by the 2D blueprint).
# rr.log(f"{pinhole_log_path}/depth", rr.DepthImage(depth_bg, meter=1.0))
fx: float = float(relative_depth_pred.K_33[0, 0])
fy: float = float(relative_depth_pred.K_33[1, 1])
cx: float = float(relative_depth_pred.K_33[0, 2])
cy: float = float(relative_depth_pred.K_33[1, 2])
u: Float32[ndarray, "w"] = np.arange(w, dtype=np.float32)
v: Float32[ndarray, "h"] = np.arange(h, dtype=np.float32)
uu: Float32[ndarray, "h w"]
vv: Float32[ndarray, "h w"]
uu, vv = np.meshgrid(u, v)
z_cam: Float32[ndarray, "h w"] = depth_bg
valid: Bool[ndarray, "h w"] = np.logical_and(z_cam > 0.0, np.isfinite(z_cam))
if np.any(valid):
x_cam: Float32[ndarray, "h w"] = (uu - cx) * z_cam / fx
y_cam: Float32[ndarray, "h w"] = (vv - cy) * z_cam / fy
points_cam: Float32[ndarray, "h w 3"] = np.stack([x_cam, y_cam, z_cam], axis=-1)
points_flat: Float32[ndarray, "n_valid 3"] = points_cam[valid]
colors_flat: UInt8[ndarray, "n_valid 3"] = rgb_hw3[valid]
if points_flat.shape[0] > MAX_POINT_CLOUD_POINTS:
voxel_size: float = estimate_voxel_size(
points_flat, target_points=MAX_POINT_CLOUD_POINTS, tolerance=0.25
)
pcd: o3d.geometry.PointCloud = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points_flat)
pcd.colors = o3d.utility.Vector3dVector(colors_flat.astype(np.float32) / 255.0)
pcd_ds: o3d.geometry.PointCloud = pcd.voxel_down_sample(voxel_size)
points_flat = np.asarray(pcd_ds.points, dtype=np.float32)
colors_flat = (np.asarray(pcd_ds.colors, dtype=np.float32) * 255.0).astype(np.uint8)
rr.log(
f"{parent_log_path}/depth_point_cloud",
rr.Points3D(
positions=points_flat,
colors=colors_flat,
),
)
def create_view() -> rrb.ContainerLike:
view_2d = rrb.Vertical(
contents=[
# Top: people-only overlay on the RGB image.
rrb.Spatial2DView(
name="image",
origin="/world/cam/pinhole",
contents=[
"/world/cam/pinhole/image",
"/world/cam/pinhole/pred/segmentation_overlay",
],
),
# Bottom: 2D boxes + keypoints; segmentation hidden.
rrb.Spatial2DView(
name="mhr",
origin="/world/cam/pinhole",
contents=[
"/world/cam/pinhole/image",
"/world/cam/pinhole/pred/**",
"- /world/cam/pinhole/pred/segmentation_overlay/**",
"- /world/cam/pinhole/pred/segmentation_ids/**",
],
),
],
)
view_3d = rrb.Spatial3DView(name="mhr_3d", line_grid=rrb.LineGrid3D(visible=False))
main_view = rrb.Horizontal(contents=[view_2d, view_3d], column_shares=[2, 3])
view = rrb.Tabs(contents=[main_view], name="sam-3d-body-demo")
return view
|