File size: 18,522 Bytes
6da47c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
from pathlib import Path

import cv2
import numpy as np
import open3d as o3d
import rerun as rr
import rerun.blueprint as rrb
from jaxtyping import Bool, Float32, Int, UInt8
from monopriors.depth_utils import depth_edges_mask
from monopriors.relative_depth_models import RelativeDepthPrediction
from numpy import ndarray
from simplecv.camera_parameters import Extrinsics, Intrinsics, PinholeParameters
from simplecv.ops.pc_utils import estimate_voxel_size
from simplecv.rerun_log_utils import log_pinhole

from sam3d_body.metadata.mhr70 import MHR70_ID2NAME, MHR70_IDS, MHR70_LINKS
from sam3d_body.sam_3d_body_estimator import FinalPosePrediction

BOX_PALETTE: UInt8[np.ndarray, "n_colors 4"] = np.array(
    [
        [255, 99, 71, 255],  # tomato
        [65, 105, 225, 255],  # royal blue
        [60, 179, 113, 255],  # medium sea green
        [255, 215, 0, 255],  # gold
        [138, 43, 226, 255],  # blue violet
        [255, 140, 0, 255],  # dark orange
        [220, 20, 60, 255],  # crimson
        [70, 130, 180, 255],  # steel blue
    ],
    dtype=np.uint8,
)

# Use a separate id range for segmentation classes to avoid clobbering the person class (id=0).
SEG_CLASS_OFFSET = 1000  # background = 1000, persons start at 1001
MAX_POINT_CLOUD_POINTS = 50_000
MIN_DEPTH_CONFIDENCE = 0.5


def filter_out_of_bounds(
    uv: Float32[ndarray, "n_points 2"],
    h: int,
    w: int,
    xyz_cam: Float32[ndarray, "n_points 3"] | None = None,
) -> Float32[ndarray, "n_points 2"]:
    """Return a copy of ``uv`` with off-screen (and optional behind-camera) points masked.

    Args:
        uv: Pixel coordinates ``[N, 2]`` in (u, v) order.
        h: Image height in pixels.
        w: Image width in pixels.
        xyz_cam: Optional camera-frame coordinates ``[N, 3]`` to mask points with negative ``z``.

    Returns:
        Copy of ``uv`` where out-of-bounds rows are set to ``NaN`` so Rerun hides them.
    """

    uv_filtered: Float32[ndarray, "n_points 2"] = np.asarray(uv, dtype=np.float32).copy()

    out_of_bounds: Bool[ndarray, "n_points"] = np.logical_or(uv_filtered[:, 0] >= float(w), uv_filtered[:, 0] < 0.0)
    out_of_bounds = np.logical_or(out_of_bounds, uv_filtered[:, 1] >= float(h))
    out_of_bounds = np.logical_or(out_of_bounds, uv_filtered[:, 1] < 0.0)

    if xyz_cam is not None:
        out_of_bounds = np.logical_or(out_of_bounds, xyz_cam[:, 2] < 0.0)

    uv_filtered[out_of_bounds, :] = np.nan
    return uv_filtered


def compute_vertex_normals(
    verts: Float32[ndarray, "n_verts 3"],
    faces: Int[ndarray, "n_faces 3"],
    eps: float = 1e-12,
) -> Float32[ndarray, "n_verts 3"]:
    """Compute per-vertex normals for a single mesh.

    Args:
        verts: Float32 array of vertex positions with shape ``(n_verts, 3)``.
        faces: Int array of triangle indices with shape ``(n_faces, 3)``.
        eps: Small epsilon to avoid division by zero when normalizing.

    Returns:
        Float32 array of unit vertex normals with shape ``(n_verts, 3)``; zeros for degenerate vertices.
    """

    # Expand faces to vertex triplets and fetch their positions.
    faces_i: Int[ndarray, "n_faces 3"] = faces.astype(np.int64)
    v0: Float32[ndarray, "n_faces 3"] = verts[faces_i[:, 0]]
    v1: Float32[ndarray, "n_faces 3"] = verts[faces_i[:, 1]]
    v2: Float32[ndarray, "n_faces 3"] = verts[faces_i[:, 2]]

    # Face normal = cross(edge1, edge2).
    e1: Float32[ndarray, "n_faces 3"] = v1 - v0
    e2: Float32[ndarray, "n_faces 3"] = v2 - v0
    face_normals: Float32[ndarray, "n_faces 3"] = np.cross(e1, e2)

    # Accumulate each face normal into its three vertices with a vectorized scatter-add.
    vertex_normals: Float32[ndarray, "n_verts 3"] = np.zeros_like(verts, dtype=np.float32)
    flat_indices: Int[ndarray, "n_faces3"] = faces_i.reshape(-1)
    face_normals_repeated: Float32[ndarray, "n_faces3 3"] = np.repeat(face_normals, 3, axis=0)
    np.add.at(vertex_normals, flat_indices, face_normals_repeated)

    norms: Float32[ndarray, "n_verts 1"] = np.linalg.norm(vertex_normals, axis=-1, keepdims=True)
    denom: Float32[ndarray, "n_verts 1"] = np.maximum(norms, eps).astype(np.float32)
    vn_unit: Float32[ndarray, "n_verts 3"] = (vertex_normals / denom).astype(np.float32)
    mask: ndarray = norms > eps
    vn_unit = np.where(mask, vn_unit, np.float32(0.0))
    return vn_unit


def export_meshes_to_glb(
    pred_list: list[FinalPosePrediction],
    faces: Int[ndarray, "n_faces 3"],
    output_dir: Path,
    box_palette: UInt8[ndarray, "n_colors 4"] = BOX_PALETTE,
    center_mesh: bool = True,
) -> list[Path]:
    """Write one GLB per predicted mesh and return the file paths."""

    output_dir.mkdir(parents=True, exist_ok=True)
    written_paths: list[Path] = []
    faces_int: Int[ndarray, "n_faces 3"] = np.ascontiguousarray(faces, dtype=np.int32)

    for idx, output in enumerate(pred_list):
        verts_cam: Float32[ndarray, "n_verts 3"] = np.ascontiguousarray(output.pred_vertices, dtype=np.float32)
        cam_t: Float32[ndarray, "3"] = np.ascontiguousarray(output.pred_cam_t, dtype=np.float32)
        # Convert to world coordinates to mirror the viewer logging convention (cam → world via translation).
        verts_world: Float32[ndarray, "n_verts 3"] = np.ascontiguousarray(verts_cam + cam_t, dtype=np.float32)
        verts_export: Float32[ndarray, "n_verts 3"]
        verts_export = verts_world - np.mean(verts_world, axis=0, keepdims=True) if center_mesh else verts_world

        vertex_normals: Float32[ndarray, "n_verts 3"] = compute_vertex_normals(verts_export, faces_int)

        mesh = o3d.geometry.TriangleMesh()
        mesh.vertices = o3d.utility.Vector3dVector(verts_export.astype(np.float64))
        mesh.triangles = o3d.utility.Vector3iVector(faces_int.astype(np.int32))
        mesh.vertex_normals = o3d.utility.Vector3dVector(vertex_normals.astype(np.float64))

        color: Float32[ndarray, "3"] = box_palette[idx % len(box_palette), :3].astype(np.float32) / 255.0
        vertex_colors: Float32[ndarray, "n_verts 3"] = np.repeat(color[np.newaxis, :], verts_export.shape[0], axis=0)
        mesh.vertex_colors = o3d.utility.Vector3dVector(vertex_colors.astype(np.float64))

        glb_path: Path = output_dir / f"person_{idx:02d}.glb"
        success: bool = bool(
            o3d.io.write_triangle_mesh(
                str(glb_path),
                mesh,
                write_ascii=False,
                write_vertex_normals=True,
                write_vertex_colors=True,
            )
        )
        if not success:
            fallback_path: Path = output_dir / f"person_{idx:02d}.ply"
            success = bool(
                o3d.io.write_triangle_mesh(
                    str(fallback_path),
                    mesh,
                    write_ascii=False,
                    write_vertex_normals=True,
                    write_vertex_colors=True,
                )
            )
            if success:
                glb_path = fallback_path

        if success:
            written_paths.append(glb_path)

    return written_paths


def set_annotation_context() -> None:
    """Register MHR-70 semantic metadata so subsequent logs show names/edges and mask colors."""
    # Base person class (for keypoints / boxes) uses id=0 (original), segmentation uses 1000+ to avoid clashes.
    person_class = rr.ClassDescription(
        info=rr.AnnotationInfo(id=0, label="Person", color=(0, 0, 255)),
        keypoint_annotations=[rr.AnnotationInfo(id=idx, label=name) for idx, name in MHR70_ID2NAME.items()],
        keypoint_connections=MHR70_LINKS,
    )

    # Segmentation classes: id=SEG_CLASS_OFFSET background, ids SEG_CLASS_OFFSET+1..n for each instance color.
    seg_classes: list[rr.ClassDescription] = [
        rr.ClassDescription(info=rr.AnnotationInfo(id=SEG_CLASS_OFFSET, label="Background", color=(64, 64, 64))),
    ]
    for idx, color in enumerate(BOX_PALETTE[:, :3].tolist(), start=1):
        seg_classes.append(
            rr.ClassDescription(
                info=rr.AnnotationInfo(
                    id=SEG_CLASS_OFFSET + idx, label=f"Person-{idx}", color=tuple(int(c) for c in color)
                ),
            )
        )

    rr.log(
        "/",
        rr.AnnotationContext([person_class, *seg_classes]),
        static=True,
    )


def visualize_sample(
    pred_list: list[FinalPosePrediction],
    rgb_hw3: UInt8[ndarray, "h w 3"],
    parent_log_path: Path,
    faces: Int[ndarray, "n_faces 3"],
    relative_depth_pred: RelativeDepthPrediction | None = None,
) -> None:
    h: int = rgb_hw3.shape[0]
    w: int = rgb_hw3.shape[1]
    cam_log_path: Path = parent_log_path / "cam"
    pinhole_log_path: Path = cam_log_path / "pinhole"
    image_log_path: Path = pinhole_log_path / "image"
    pred_log_path: Path = pinhole_log_path / "pred"
    # log the pinhole camera parameters (assume fx=fy and center at image center)
    focal_length: float = float(pred_list[0].focal_length)
    intri: Intrinsics = Intrinsics(
        camera_conventions="RDF",
        fl_x=focal_length,
        fl_y=focal_length,
        cx=float(w) / 2.0,
        cy=float(h) / 2.0,
        height=h,
        width=w,
    )
    world_T_cam: Float32[ndarray, "4 4"] = np.eye(4, dtype=np.float32)
    extri: Extrinsics = Extrinsics(
        world_R_cam=world_T_cam[:3, :3],
        world_t_cam=world_T_cam[:3, 3],
    )

    pinhole_params: PinholeParameters = PinholeParameters(intrinsics=intri, extrinsics=extri, name="pinhole")
    log_pinhole(camera=pinhole_params, cam_log_path=cam_log_path)
    # clear the previous pred logs
    rr.log(f"{pred_log_path}", rr.Clear(recursive=True))
    rr.log(f"{image_log_path}", rr.Image(rgb_hw3, color_model=rr.ColorModel.RGB).compress(jpeg_quality=90))

    # Build per-pixel maps (SEG_CLASS_OFFSET = background). Also build RGBA overlay with transparent background.
    seg_map: Int[ndarray, "h w"] = np.full((h, w), SEG_CLASS_OFFSET, dtype=np.int32)
    seg_overlay: UInt8[ndarray, "h w 4"] = np.zeros((h, w, 4), dtype=np.uint8)
    human_mask: Bool[ndarray, "h w"] = np.zeros((h, w), dtype=bool)

    mesh_root_path: Path = parent_log_path / "pred"
    rr.log(str(mesh_root_path), rr.Clear(recursive=True))

    for i, output in enumerate(pred_list):
        box_color: UInt8[ndarray, "1 4"] = BOX_PALETTE[i % len(BOX_PALETTE)].reshape(1, 4)
        rr.log(
            f"{pred_log_path}/bbox_{i}",
            rr.Boxes2D(
                array=output.bbox,
                array_format=rr.Box2DFormat.XYXY,
                class_ids=0,
                colors=box_color,
                show_labels=True,
            ),
        )

        kpts_cam: Float32[ndarray, "n_kpts 3"] = np.ascontiguousarray(output.pred_keypoints_3d, dtype=np.float32)
        kpts_uv: Float32[ndarray, "n_kpts 2"] = np.ascontiguousarray(output.pred_keypoints_2d, dtype=np.float32)
        kpts_uv_in_bounds: Float32[ndarray, "n_kpts 2"] = filter_out_of_bounds(
            uv=kpts_uv,
            h=h,
            w=w,
            xyz_cam=None,  # Depth sign from the model can be negative; only cull by image bounds.
        )
        rr.log(
            f"{pred_log_path}/uv_{i}",
            rr.Points2D(
                positions=kpts_uv_in_bounds,
                keypoint_ids=MHR70_IDS,
                class_ids=0,
                colors=(0, 255, 0),
            ),
        )

        # Accumulate segmentation masks (if present) into a single segmentation image.
        mask = output.mask
        if mask is not None:
            mask_arr: ndarray = np.asarray(mask).squeeze()
            if mask_arr.shape != seg_map.shape:
                mask_arr = cv2.resize(
                    mask_arr.astype(np.uint8), (seg_map.shape[1], seg_map.shape[0]), interpolation=cv2.INTER_NEAREST
                )
            mask_bool = mask_arr.astype(bool)
            human_mask = np.logical_or(human_mask, mask_bool)
            seg_id = SEG_CLASS_OFFSET + i + 1  # keep person class (0) separate from seg classes
            seg_map = np.where(mask_bool, np.uint16(seg_id), seg_map)

            # Color overlay for this instance, background stays transparent.
            color = BOX_PALETTE[i % len(BOX_PALETTE), :3]
            seg_overlay[mask_bool] = np.array([color[0], color[1], color[2], 120], dtype=np.uint8)

        # Log 3D keypoints in world coordinates
        cam_t: Float32[ndarray, "3"] = np.ascontiguousarray(output.pred_cam_t, dtype=np.float32)
        kpts_world: Float32[ndarray, "n_kpts 3"] = np.ascontiguousarray(kpts_cam + cam_t, dtype=np.float32)
        rr.log(
            f"{parent_log_path}/pred/kpts3d_{i}",
            rr.Points3D(
                positions=kpts_world,
                keypoint_ids=MHR70_IDS,
                class_ids=0,
                colors=(0, 255, 0),
            ),
        )

        # Log the full-body mesh in world coordinates so it shows in 3D
        verts_cam: Float32[ndarray, "n_verts 3"] = np.ascontiguousarray(output.pred_vertices, dtype=np.float32)
        verts_world: Float32[ndarray, "n_verts 3"] = np.ascontiguousarray(verts_cam + cam_t, dtype=np.float32)
        faces_int: Int[ndarray, "n_faces 3"] = np.ascontiguousarray(faces, dtype=np.int32)
        vertex_normals: Float32[ndarray, "n_verts 3"] = compute_vertex_normals(verts_world, faces_int)
        rr.log(
            f"{parent_log_path}/pred/mesh_{i}",
            rr.Mesh3D(
                vertex_positions=verts_world,
                triangle_indices=faces_int,
                vertex_normals=vertex_normals,
                albedo_factor=(
                    float(box_color[0, 0]) / 255.0,
                    float(box_color[0, 1]) / 255.0,
                    float(box_color[0, 2]) / 255.0,
                    0.35,
                ),
            ),
        )

    # Log segmentation ids (full map) and an RGBA overlay with transparent background.
    if np.any(seg_map != SEG_CLASS_OFFSET):
        rr.log(f"{pred_log_path}/segmentation_ids", rr.SegmentationImage(seg_map))
        rr.log(f"{pred_log_path}/segmentation_overlay", rr.Image(seg_overlay, color_model=rr.ColorModel.RGBA))

    # Optionally log depth and a background-only point cloud (for 3D view only).
    if relative_depth_pred is not None:
        depth_hw: Float32[ndarray, "h w"] = np.asarray(relative_depth_pred.depth, dtype=np.float32)
        conf_hw: Float32[ndarray, "h w"] = np.asarray(relative_depth_pred.confidence, dtype=np.float32)
        if depth_hw.shape != (h, w):
            depth_hw = cv2.resize(depth_hw, (w, h), interpolation=cv2.INTER_NEAREST)
        if conf_hw.shape != (h, w):
            conf_hw = cv2.resize(conf_hw, (w, h), interpolation=cv2.INTER_NEAREST)
        depth_hw = np.nan_to_num(depth_hw, nan=0.0, posinf=0.0, neginf=0.0)

        # Remove flying pixels along depth discontinuities.
        edges_mask: Bool[ndarray, "h w"] = depth_edges_mask(depth_hw, threshold=0.01)
        depth_hw = depth_hw * np.logical_not(edges_mask)

        # Remove low-confidence pixels.
        conf_mask: Bool[ndarray, "h w"] = conf_hw >= MIN_DEPTH_CONFIDENCE
        depth_hw = depth_hw * conf_mask

        background_mask: Bool[ndarray, "h w"] = np.logical_not(human_mask)
        depth_bg: Float32[ndarray, "h w"] = depth_hw * background_mask

        # Log depth image (not referenced by the 2D blueprint).
        # rr.log(f"{pinhole_log_path}/depth", rr.DepthImage(depth_bg, meter=1.0))

        fx: float = float(relative_depth_pred.K_33[0, 0])
        fy: float = float(relative_depth_pred.K_33[1, 1])
        cx: float = float(relative_depth_pred.K_33[0, 2])
        cy: float = float(relative_depth_pred.K_33[1, 2])

        u: Float32[ndarray, "w"] = np.arange(w, dtype=np.float32)
        v: Float32[ndarray, "h"] = np.arange(h, dtype=np.float32)
        uu: Float32[ndarray, "h w"]
        vv: Float32[ndarray, "h w"]
        uu, vv = np.meshgrid(u, v)

        z_cam: Float32[ndarray, "h w"] = depth_bg
        valid: Bool[ndarray, "h w"] = np.logical_and(z_cam > 0.0, np.isfinite(z_cam))
        if np.any(valid):
            x_cam: Float32[ndarray, "h w"] = (uu - cx) * z_cam / fx
            y_cam: Float32[ndarray, "h w"] = (vv - cy) * z_cam / fy
            points_cam: Float32[ndarray, "h w 3"] = np.stack([x_cam, y_cam, z_cam], axis=-1)

            points_flat: Float32[ndarray, "n_valid 3"] = points_cam[valid]
            colors_flat: UInt8[ndarray, "n_valid 3"] = rgb_hw3[valid]

            if points_flat.shape[0] > MAX_POINT_CLOUD_POINTS:
                voxel_size: float = estimate_voxel_size(
                    points_flat, target_points=MAX_POINT_CLOUD_POINTS, tolerance=0.25
                )
                pcd: o3d.geometry.PointCloud = o3d.geometry.PointCloud()
                pcd.points = o3d.utility.Vector3dVector(points_flat)
                pcd.colors = o3d.utility.Vector3dVector(colors_flat.astype(np.float32) / 255.0)
                pcd_ds: o3d.geometry.PointCloud = pcd.voxel_down_sample(voxel_size)
                points_flat = np.asarray(pcd_ds.points, dtype=np.float32)
                colors_flat = (np.asarray(pcd_ds.colors, dtype=np.float32) * 255.0).astype(np.uint8)

            rr.log(
                f"{parent_log_path}/depth_point_cloud",
                rr.Points3D(
                    positions=points_flat,
                    colors=colors_flat,
                ),
            )


def create_view() -> rrb.ContainerLike:
    view_2d = rrb.Vertical(
        contents=[
            # Top: people-only overlay on the RGB image.
            rrb.Spatial2DView(
                name="image",
                origin="/world/cam/pinhole",
                contents=[
                    "/world/cam/pinhole/image",
                    "/world/cam/pinhole/pred/segmentation_overlay",
                ],
            ),
            # Bottom: 2D boxes + keypoints; segmentation hidden.
            rrb.Spatial2DView(
                name="mhr",
                origin="/world/cam/pinhole",
                contents=[
                    "/world/cam/pinhole/image",
                    "/world/cam/pinhole/pred/**",
                    "- /world/cam/pinhole/pred/segmentation_overlay/**",
                    "- /world/cam/pinhole/pred/segmentation_ids/**",
                ],
            ),
        ],
    )
    view_3d = rrb.Spatial3DView(name="mhr_3d", line_grid=rrb.LineGrid3D(visible=False))
    main_view = rrb.Horizontal(contents=[view_2d, view_3d], column_shares=[2, 3])
    view = rrb.Tabs(contents=[main_view], name="sam-3d-body-demo")
    return view