diarization1Mæló
Browse files
app.py
CHANGED
|
@@ -1,25 +1,19 @@
|
|
| 1 |
# ============================================================
|
| 2 |
-
# app.py – Whisper-small + Pyannote
|
| 3 |
# ============================================================
|
| 4 |
|
| 5 |
import os
|
| 6 |
import gradio as gr
|
| 7 |
import spaces
|
| 8 |
import tempfile
|
| 9 |
-
import torch
|
| 10 |
from transformers import pipeline
|
| 11 |
from pyannote.audio import Pipeline
|
| 12 |
-
from torch.serialization import safe_globals
|
| 13 |
|
| 14 |
-
|
| 15 |
-
# STILLT MODELNÖFN
|
| 16 |
-
# ------------------------------------------------------------
|
| 17 |
ASR_MODEL = "palli23/whisper-small-sam_spjall"
|
| 18 |
-
DIAR_MODEL = "pyannote/speaker-diarization
|
|
|
|
| 19 |
|
| 20 |
-
# ------------------------------------------------------------
|
| 21 |
-
# Aðalfallið – keyrir á ZeroGPU (120s GPU max)
|
| 22 |
-
# ------------------------------------------------------------
|
| 23 |
@spaces.GPU(duration=120)
|
| 24 |
def transcribe_with_diarization(audio_path):
|
| 25 |
|
|
@@ -27,73 +21,54 @@ def transcribe_with_diarization(audio_path):
|
|
| 27 |
return "Hladdu upp hljóðskrá."
|
| 28 |
|
| 29 |
# ----------------------------
|
| 30 |
-
# 1.
|
| 31 |
# ----------------------------
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
"pyannote.audio.pipelines.speaker_diarization.SpeakerDiarization"
|
| 38 |
-
]):
|
| 39 |
-
|
| 40 |
-
# ----------------------------
|
| 41 |
-
# 2. Load diarization pipeline
|
| 42 |
-
# ----------------------------
|
| 43 |
-
diarization = Pipeline.from_pretrained(
|
| 44 |
-
DIAR_MODEL,
|
| 45 |
-
token=os.getenv("HF_TOKEN") # <--- RÉTT FYRIR PYANNOTE 3.1
|
| 46 |
-
).to("cuda")
|
| 47 |
-
|
| 48 |
-
# Keyra diarization
|
| 49 |
diar = diarization(audio_path)
|
| 50 |
|
| 51 |
# ----------------------------
|
| 52 |
-
#
|
| 53 |
# ----------------------------
|
| 54 |
asr = pipeline(
|
| 55 |
task="automatic-speech-recognition",
|
| 56 |
model=ASR_MODEL,
|
| 57 |
-
device=0
|
| 58 |
-
token=os.getenv("HF_TOKEN")
|
| 59 |
)
|
| 60 |
|
| 61 |
# ----------------------------
|
| 62 |
-
#
|
| 63 |
# ----------------------------
|
| 64 |
-
|
| 65 |
|
| 66 |
for turn, _, speaker in diar.itertracks(yield_label=True):
|
| 67 |
|
| 68 |
-
# Vista tímabundna WAV fyrir hvert segment
|
| 69 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
|
| 70 |
diar.crop(audio_path, turn).export(tmp.name, format="wav")
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
# ASR texti
|
| 74 |
-
text = asr(seg_path)["text"].strip()
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
|
| 79 |
-
|
| 80 |
-
os.unlink(seg_path)
|
| 81 |
|
| 82 |
-
return "\n".join(
|
| 83 |
|
| 84 |
|
| 85 |
# ------------------------------------------------------------
|
| 86 |
# GRADIO UI
|
| 87 |
# ------------------------------------------------------------
|
| 88 |
with gr.Blocks() as demo:
|
| 89 |
-
gr.Markdown("# 🎙️ Íslenskt
|
| 90 |
-
gr.Markdown("Whisper-small + pyannote
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
|
| 98 |
-
# Spaces auth
|
| 99 |
demo.launch(auth=("beta", "beta2025"))
|
|
|
|
| 1 |
# ============================================================
|
| 2 |
+
# app.py – Whisper-small + Pyannote 2.1.1 (ZeroGPU örugg útgáfa)
|
| 3 |
# ============================================================
|
| 4 |
|
| 5 |
import os
|
| 6 |
import gradio as gr
|
| 7 |
import spaces
|
| 8 |
import tempfile
|
|
|
|
| 9 |
from transformers import pipeline
|
| 10 |
from pyannote.audio import Pipeline
|
|
|
|
| 11 |
|
| 12 |
+
|
|
|
|
|
|
|
| 13 |
ASR_MODEL = "palli23/whisper-small-sam_spjall"
|
| 14 |
+
DIAR_MODEL = "pyannote/speaker-diarization" # <--- ATH: ekki 3.1
|
| 15 |
+
|
| 16 |
|
|
|
|
|
|
|
|
|
|
| 17 |
@spaces.GPU(duration=120)
|
| 18 |
def transcribe_with_diarization(audio_path):
|
| 19 |
|
|
|
|
| 21 |
return "Hladdu upp hljóðskrá."
|
| 22 |
|
| 23 |
# ----------------------------
|
| 24 |
+
# 1. Load diarization pipeline
|
| 25 |
# ----------------------------
|
| 26 |
+
diarization = Pipeline.from_pretrained(
|
| 27 |
+
DIAR_MODEL,
|
| 28 |
+
use_auth_token=os.getenv("HF_TOKEN") # pyannote 2.x notar þetta
|
| 29 |
+
).to("cuda")
|
| 30 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
diar = diarization(audio_path)
|
| 32 |
|
| 33 |
# ----------------------------
|
| 34 |
+
# 2. Whisper ASR
|
| 35 |
# ----------------------------
|
| 36 |
asr = pipeline(
|
| 37 |
task="automatic-speech-recognition",
|
| 38 |
model=ASR_MODEL,
|
| 39 |
+
device=0
|
|
|
|
| 40 |
)
|
| 41 |
|
| 42 |
# ----------------------------
|
| 43 |
+
# 3. Skera út segment + ASR
|
| 44 |
# ----------------------------
|
| 45 |
+
output_lines = []
|
| 46 |
|
| 47 |
for turn, _, speaker in diar.itertracks(yield_label=True):
|
| 48 |
|
|
|
|
| 49 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
|
| 50 |
diar.crop(audio_path, turn).export(tmp.name, format="wav")
|
| 51 |
+
seg_file = tmp.name
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
text = asr(seg_file)["text"].strip()
|
| 54 |
+
output_lines.append(f"[MÆLENDI {speaker}] {text}")
|
| 55 |
|
| 56 |
+
os.unlink(seg_file)
|
|
|
|
| 57 |
|
| 58 |
+
return "\n".join(output_lines) or "Enginn texti fannst."
|
| 59 |
|
| 60 |
|
| 61 |
# ------------------------------------------------------------
|
| 62 |
# GRADIO UI
|
| 63 |
# ------------------------------------------------------------
|
| 64 |
with gr.Blocks() as demo:
|
| 65 |
+
gr.Markdown("# 🎙️ Íslenskt ASR + mælendagreining")
|
| 66 |
+
gr.Markdown("Whisper-small + pyannote 2.1.1 (ZeroGPU örugg útgáfa)")
|
| 67 |
|
| 68 |
+
audio = gr.Audio(type="filepath", label="Hlaða inn hljóði (.wav or .mp3)")
|
| 69 |
+
out = gr.Textbox(lines=30, label="Útskrift með mælendum")
|
| 70 |
|
| 71 |
+
btn = gr.Button("Transcribe með mælendum", variant="primary")
|
| 72 |
+
btn.click(transcribe_with_diarization, inputs=audio, outputs=out)
|
| 73 |
|
|
|
|
| 74 |
demo.launch(auth=("beta", "beta2025"))
|