Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,16 +1,39 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
import re
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained("pepegiallo/flan-t5-base_ner")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
model.eval()
|
| 10 |
|
|
|
|
| 11 |
id2label = {0: "LOC", 1: "ORG", 2: "PER", 3: "O"}
|
| 12 |
|
| 13 |
-
#
|
| 14 |
def custom_tokenize(text):
|
| 15 |
return re.findall(r"\w+|[^\w\s]", text, re.UNICODE)
|
| 16 |
|
|
@@ -22,6 +45,7 @@ def custom_detokenize(tokens):
|
|
| 22 |
text += token
|
| 23 |
return text
|
| 24 |
|
|
|
|
| 25 |
def classify_tokens(text):
|
| 26 |
tokens = custom_tokenize(text)
|
| 27 |
results = []
|
|
@@ -32,14 +56,14 @@ def classify_tokens(text):
|
|
| 32 |
|
| 33 |
inputs = tokenizer(prompt, return_tensors="pt", padding="max_length", truncation=True, max_length=128)
|
| 34 |
with torch.no_grad():
|
| 35 |
-
logits = model(**inputs)
|
| 36 |
pred_id = torch.argmax(logits, dim=-1).item()
|
| 37 |
label = id2label[pred_id]
|
| 38 |
|
| 39 |
results.append((tokens[i], label))
|
| 40 |
return results
|
| 41 |
|
| 42 |
-
# Gradio
|
| 43 |
demo = gr.Interface(
|
| 44 |
fn=classify_tokens,
|
| 45 |
inputs=gr.Textbox(lines=3, placeholder="Enter a sentence..."),
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
import re
|
| 4 |
+
from transformers import AutoTokenizer, T5EncoderModel
|
| 5 |
+
import torch.nn as nn
|
| 6 |
|
| 7 |
+
# Klassendefinition aus dem Training
|
| 8 |
+
class FlanT5Classifier(nn.Module):
|
| 9 |
+
def __init__(self, base_model_name="google/flan-t5-base", num_labels=4):
|
| 10 |
+
super().__init__()
|
| 11 |
+
self.encoder = T5EncoderModel.from_pretrained(base_model_name)
|
| 12 |
+
self.dropout = nn.Dropout(0.1)
|
| 13 |
+
self.classifier = nn.Linear(self.encoder.config.d_model, num_labels)
|
| 14 |
+
|
| 15 |
+
def forward(self, input_ids, attention_mask=None):
|
| 16 |
+
encoder_outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
|
| 17 |
+
pooled = encoder_outputs.last_hidden_state[:, 0]
|
| 18 |
+
logits = self.classifier(self.dropout(pooled))
|
| 19 |
+
return {"logits": logits}
|
| 20 |
+
|
| 21 |
+
# Tokenizer laden
|
| 22 |
tokenizer = AutoTokenizer.from_pretrained("pepegiallo/flan-t5-base_ner")
|
| 23 |
+
|
| 24 |
+
# Modell instanziieren und Token-Embeddings anpassen
|
| 25 |
+
model = FlanT5Classifier()
|
| 26 |
+
model.encoder.resize_token_embeddings(len(tokenizer))
|
| 27 |
+
|
| 28 |
+
# Gewichte laden
|
| 29 |
+
state_dict = torch.load("pytorch_model.bin", map_location="cpu")
|
| 30 |
+
model.load_state_dict(state_dict)
|
| 31 |
model.eval()
|
| 32 |
|
| 33 |
+
# ID-Zuordnung
|
| 34 |
id2label = {0: "LOC", 1: "ORG", 2: "PER", 3: "O"}
|
| 35 |
|
| 36 |
+
# Tokenizer-Funktionen
|
| 37 |
def custom_tokenize(text):
|
| 38 |
return re.findall(r"\w+|[^\w\s]", text, re.UNICODE)
|
| 39 |
|
|
|
|
| 45 |
text += token
|
| 46 |
return text
|
| 47 |
|
| 48 |
+
# Klassifikationsfunktion
|
| 49 |
def classify_tokens(text):
|
| 50 |
tokens = custom_tokenize(text)
|
| 51 |
results = []
|
|
|
|
| 56 |
|
| 57 |
inputs = tokenizer(prompt, return_tensors="pt", padding="max_length", truncation=True, max_length=128)
|
| 58 |
with torch.no_grad():
|
| 59 |
+
logits = model(**inputs)["logits"]
|
| 60 |
pred_id = torch.argmax(logits, dim=-1).item()
|
| 61 |
label = id2label[pred_id]
|
| 62 |
|
| 63 |
results.append((tokens[i], label))
|
| 64 |
return results
|
| 65 |
|
| 66 |
+
# Gradio UI
|
| 67 |
demo = gr.Interface(
|
| 68 |
fn=classify_tokens,
|
| 69 |
inputs=gr.Textbox(lines=3, placeholder="Enter a sentence..."),
|