Spaces:
Runtime error
Runtime error
Steven Chen
commited on
debug
Browse files
app.py
CHANGED
|
@@ -112,13 +112,13 @@ def load_files(file_paths: list):
|
|
| 112 |
docs.extend(loaded_docs)
|
| 113 |
return docs
|
| 114 |
|
| 115 |
-
def split_text(txt, chunk_size=200, overlap=20):
|
| 116 |
-
|
| 117 |
-
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
|
| 123 |
def create_embedding_model(model_file):
|
| 124 |
embedding = HuggingFaceEmbeddings(model_name=model_file, model_kwargs={'trust_remote_code': True})
|
|
@@ -137,10 +137,10 @@ def file_paths_match(store_path, file_paths):
|
|
| 137 |
saved_file_paths = load_file_paths(store_path)
|
| 138 |
return saved_file_paths == file_paths
|
| 139 |
|
| 140 |
-
def create_vector_store(docs, store_file, embeddings):
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
|
| 145 |
def load_vector_store(store_path, embeddings):
|
| 146 |
if os.path.exists(store_path):
|
|
@@ -149,20 +149,48 @@ def load_vector_store(store_path, embeddings):
|
|
| 149 |
else:
|
| 150 |
return None
|
| 151 |
|
| 152 |
-
def
|
| 153 |
-
if
|
| 154 |
-
|
| 155 |
-
vector_store = load_vector_store(store_path, embeddings)
|
| 156 |
-
if vector_store:
|
| 157 |
-
return vector_store
|
| 158 |
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
docs
|
| 162 |
-
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
return vector_store
|
| 165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
def query_vector_store(vector_store: FAISS, query, k=4, relevance_threshold=0.8):
|
| 167 |
retriever = vector_store.as_retriever(
|
| 168 |
search_type="similarity_score_threshold",
|
|
|
|
| 112 |
docs.extend(loaded_docs)
|
| 113 |
return docs
|
| 114 |
|
| 115 |
+
# def split_text(txt, chunk_size=200, overlap=20):
|
| 116 |
+
# if not txt:
|
| 117 |
+
# return None
|
| 118 |
|
| 119 |
+
# splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap)
|
| 120 |
+
# docs = splitter.split_documents(txt)
|
| 121 |
+
# return docs
|
| 122 |
|
| 123 |
def create_embedding_model(model_file):
|
| 124 |
embedding = HuggingFaceEmbeddings(model_name=model_file, model_kwargs={'trust_remote_code': True})
|
|
|
|
| 137 |
saved_file_paths = load_file_paths(store_path)
|
| 138 |
return saved_file_paths == file_paths
|
| 139 |
|
| 140 |
+
# def create_vector_store(docs, store_file, embeddings):
|
| 141 |
+
# vector_store = FAISS.from_documents(docs, embeddings)
|
| 142 |
+
# vector_store.save_local(store_file)
|
| 143 |
+
# return vector_store
|
| 144 |
|
| 145 |
def load_vector_store(store_path, embeddings):
|
| 146 |
if os.path.exists(store_path):
|
|
|
|
| 149 |
else:
|
| 150 |
return None
|
| 151 |
|
| 152 |
+
def split_text(txt, chunk_size=200, overlap=20):
|
| 153 |
+
if not txt:
|
| 154 |
+
return [] # 返回空列表而不是 None
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap)
|
| 157 |
+
docs = splitter.split_documents(txt)
|
| 158 |
+
return docs
|
| 159 |
+
|
| 160 |
+
def create_vector_store(docs, store_file, embeddings):
|
| 161 |
+
if not docs: # 添加验证
|
| 162 |
+
raise ValueError("No documents provided for creating vector store")
|
| 163 |
+
|
| 164 |
+
vector_store = FAISS.from_documents(docs, embeddings)
|
| 165 |
+
vector_store.save_local(store_file)
|
| 166 |
return vector_store
|
| 167 |
|
| 168 |
+
def load_or_create_store(store_path, file_paths, embeddings):
|
| 169 |
+
try:
|
| 170 |
+
if os.path.exists(store_path) and file_paths_match(store_path, file_paths):
|
| 171 |
+
print("Vector database is consistent with last use, no need to rewrite")
|
| 172 |
+
vector_store = load_vector_store(store_path, embeddings)
|
| 173 |
+
if vector_store:
|
| 174 |
+
return vector_store
|
| 175 |
+
|
| 176 |
+
print("Rewriting database")
|
| 177 |
+
pages = load_files(file_paths)
|
| 178 |
+
if not pages: # 添加验证
|
| 179 |
+
raise ValueError("No documents loaded from provided file paths")
|
| 180 |
+
|
| 181 |
+
docs = split_text(pages)
|
| 182 |
+
if not docs: # 添加验证
|
| 183 |
+
raise ValueError("No documents created after splitting text")
|
| 184 |
+
|
| 185 |
+
vector_store = create_vector_store(docs, store_path, embeddings)
|
| 186 |
+
save_file_paths(store_path, file_paths)
|
| 187 |
+
return vector_store
|
| 188 |
+
|
| 189 |
+
except Exception as e:
|
| 190 |
+
print(f"Error creating vector store: {str(e)}")
|
| 191 |
+
# 可以根据需要决定是否继续抛出异常
|
| 192 |
+
raise
|
| 193 |
+
|
| 194 |
def query_vector_store(vector_store: FAISS, query, k=4, relevance_threshold=0.8):
|
| 195 |
retriever = vector_store.as_retriever(
|
| 196 |
search_type="similarity_score_threshold",
|