Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,744 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import openvino_genai
|
| 5 |
+
from huggingface_hub import snapshot_download
|
| 6 |
+
from threading import Lock, Event
|
| 7 |
+
import os
|
| 8 |
+
import numpy as np
|
| 9 |
+
import requests
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from io import BytesIO
|
| 12 |
+
import cpuinfo
|
| 13 |
+
import openvino as ov
|
| 14 |
+
import librosa
|
| 15 |
+
from googleapiclient.discovery import build
|
| 16 |
+
import gc
|
| 17 |
+
from PyPDF2 import PdfReader
|
| 18 |
+
from docx import Document
|
| 19 |
+
import textwrap
|
| 20 |
+
from queue import Queue, Empty
|
| 21 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 22 |
+
from typing import Generator
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
GOOGLE_API_KEY = "AIzaSyAo-1iW5MEZbc53DlEldtnUnDaYuTHUDH4"
|
| 26 |
+
GOOGLE_CSE_ID = "3027bedf3c88a4efb"
|
| 27 |
+
DEFAULT_MAX_TOKENS = 4096
|
| 28 |
+
DEFAULT_NUM_IMAGES = 1
|
| 29 |
+
MAX_HISTORY_TURNS = 3
|
| 30 |
+
MAX_TOKENS_LIMIT = 4096
|
| 31 |
+
|
| 32 |
+
class UnifiedAISystem:
|
| 33 |
+
def __init__(self):
|
| 34 |
+
self.pipe_lock = Lock()
|
| 35 |
+
self.current_df = None
|
| 36 |
+
self.mistral_pipe = None
|
| 37 |
+
self.internvl_pipe = None
|
| 38 |
+
self.whisper_pipe = None
|
| 39 |
+
self.current_document_text = None
|
| 40 |
+
self.generation_executor = ThreadPoolExecutor(max_workers=3)
|
| 41 |
+
self.initialize_models()
|
| 42 |
+
|
| 43 |
+
def initialize_models(self):
|
| 44 |
+
"""Initialize all required models"""
|
| 45 |
+
|
| 46 |
+
if not os.path.exists("mistral-ov"):
|
| 47 |
+
snapshot_download(repo_id="OpenVINO/mistral-7b-instruct-v0.1-int8-ov", local_dir="mistral-ov")
|
| 48 |
+
if not os.path.exists("internvl-ov"):
|
| 49 |
+
snapshot_download(repo_id="OpenVINO/InternVL2-1B-int8-ov", local_dir="internvl-ov")
|
| 50 |
+
if not os.path.exists("whisper-ov-model"):
|
| 51 |
+
snapshot_download(repo_id="OpenVINO/whisper-tiny-fp16-ov", local_dir="whisper-ov-model")
|
| 52 |
+
|
| 53 |
+
cpu_features = cpuinfo.get_cpu_info()['flags']
|
| 54 |
+
config_options = {}
|
| 55 |
+
if 'avx512' in cpu_features:
|
| 56 |
+
config_options["ENFORCE_BF16"] = "YES"
|
| 57 |
+
elif 'avx2' in cpu_features:
|
| 58 |
+
config_options["INFERENCE_PRECISION_HINT"] = "f32"
|
| 59 |
+
|
| 60 |
+
# Initialize Mistral model
|
| 61 |
+
self.mistral_pipe = openvino_genai.LLMPipeline(
|
| 62 |
+
"mistral-ov",
|
| 63 |
+
device="CPU",
|
| 64 |
+
config={"PERFORMANCE_HINT": "THROUGHPUT", **config_options}
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
self.whisper_pipe = openvino_genai.WhisperPipeline("whisper-ov-model", device="CPU")
|
| 69 |
+
|
| 70 |
+
def load_data(self, file_path):
|
| 71 |
+
"""Load student data from file"""
|
| 72 |
+
try:
|
| 73 |
+
file_ext = os.path.splitext(file_path)[1].lower()
|
| 74 |
+
if file_ext == '.csv':
|
| 75 |
+
self.current_df = pd.read_csv(file_path)
|
| 76 |
+
elif file_ext in ['.xlsx', '.xls']:
|
| 77 |
+
self.current_df = pd.read_excel(file_path)
|
| 78 |
+
else:
|
| 79 |
+
return False, "❌ Unsupported file format. Please upload a .csv or .xlsx file."
|
| 80 |
+
return True, f"✅ Loaded {len(self.current_df)} records from {os.path.basename(file_path)}"
|
| 81 |
+
except Exception as e:
|
| 82 |
+
return False, f"❌ Error loading file: {str(e)}"
|
| 83 |
+
|
| 84 |
+
def extract_text_from_document(self, file_path):
|
| 85 |
+
"""Extract text from PDF or DOCX documents"""
|
| 86 |
+
text = ""
|
| 87 |
+
try:
|
| 88 |
+
file_ext = os.path.splitext(file_path)[1].lower()
|
| 89 |
+
|
| 90 |
+
if file_ext == '.pdf':
|
| 91 |
+
with open(file_path, 'rb') as file:
|
| 92 |
+
pdf_reader = PdfReader(file)
|
| 93 |
+
for page in pdf_reader.pages:
|
| 94 |
+
text += page.extract_text() + "\n"
|
| 95 |
+
|
| 96 |
+
elif file_ext == '.docx':
|
| 97 |
+
doc = Document(file_path)
|
| 98 |
+
for para in doc.paragraphs:
|
| 99 |
+
text += para.text + "\n"
|
| 100 |
+
|
| 101 |
+
else:
|
| 102 |
+
return False, "❌ Unsupported document format. Please upload PDF or DOCX."
|
| 103 |
+
|
| 104 |
+
# Clean and format text
|
| 105 |
+
text = text.replace('\x0c', '')
|
| 106 |
+
text = textwrap.dedent(text)
|
| 107 |
+
self.current_document_text = text
|
| 108 |
+
return True, f"✅ Extracted text from {os.path.basename(file_path)}"
|
| 109 |
+
|
| 110 |
+
except Exception as e:
|
| 111 |
+
return False, f"❌ Error processing document: {str(e)}"
|
| 112 |
+
|
| 113 |
+
def generate_text_stream(self, prompt: str, max_tokens: int) -> Generator[str, None, None]:
|
| 114 |
+
"""Unified text generation with queued token streaming"""
|
| 115 |
+
start_time = time.time()
|
| 116 |
+
response_queue = Queue()
|
| 117 |
+
completion_event = Event()
|
| 118 |
+
error = [None]
|
| 119 |
+
|
| 120 |
+
optimized_config = openvino_genai.GenerationConfig(
|
| 121 |
+
max_new_tokens=max_tokens,
|
| 122 |
+
temperature=0.3,
|
| 123 |
+
top_p=0.9,
|
| 124 |
+
streaming=True,
|
| 125 |
+
streaming_interval=5
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
def callback(tokens):
|
| 129 |
+
response_queue.put("".join(tokens))
|
| 130 |
+
return openvino_genai.StreamingStatus.RUNNING
|
| 131 |
+
|
| 132 |
+
def generate():
|
| 133 |
+
try:
|
| 134 |
+
with self.pipe_lock:
|
| 135 |
+
self.mistral_pipe.generate(prompt, optimized_config, callback)
|
| 136 |
+
except Exception as e:
|
| 137 |
+
error[0] = str(e)
|
| 138 |
+
finally:
|
| 139 |
+
completion_event.set()
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
self.generation_executor.submit(generate)
|
| 143 |
+
|
| 144 |
+
accumulated = []
|
| 145 |
+
token_count = 0
|
| 146 |
+
last_gc = time.time()
|
| 147 |
+
|
| 148 |
+
while not completion_event.is_set() or not response_queue.empty():
|
| 149 |
+
if error[0]:
|
| 150 |
+
yield f"❌ Error: {error[0]}"
|
| 151 |
+
print(f"Stream generation time: {time.time() - start_time:.2f} seconds")
|
| 152 |
+
return
|
| 153 |
+
|
| 154 |
+
try:
|
| 155 |
+
token_batch = response_queue.get(timeout=0.1)
|
| 156 |
+
accumulated.append(token_batch)
|
| 157 |
+
token_count += len(token_batch)
|
| 158 |
+
yield "".join(accumulated)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
if time.time() - last_gc > 2.0:
|
| 162 |
+
gc.collect()
|
| 163 |
+
last_gc = time.time()
|
| 164 |
+
except Empty:
|
| 165 |
+
continue
|
| 166 |
+
|
| 167 |
+
print(f"Generated {token_count} tokens in {time.time() - start_time:.2f} seconds "
|
| 168 |
+
f"({token_count/(time.time() - start_time):.2f} tokens/sec)")
|
| 169 |
+
yield "".join(accumulated)
|
| 170 |
+
|
| 171 |
+
def analyze_student_data(self, query, max_tokens=4098):
|
| 172 |
+
"""Analyze student data using AI with streaming"""
|
| 173 |
+
if not query or not query.strip():
|
| 174 |
+
yield "⚠️ Please enter a valid question"
|
| 175 |
+
return
|
| 176 |
+
|
| 177 |
+
if self.current_df is None:
|
| 178 |
+
yield "⚠️ Please upload and load a student data file first"
|
| 179 |
+
return
|
| 180 |
+
|
| 181 |
+
data_summary = self._prepare_data_summary(self.current_df)
|
| 182 |
+
prompt = f"""You are an expert education analyst. Analyze the following student performance data:
|
| 183 |
+
{data_summary}
|
| 184 |
+
Question: {query}
|
| 185 |
+
Please include:
|
| 186 |
+
1. Direct answer to the question
|
| 187 |
+
2. Relevant statistics
|
| 188 |
+
3. Key insights
|
| 189 |
+
4. Actionable recommendations
|
| 190 |
+
Format the output with clear headings"""
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
yield from self.generate_text_stream(prompt, max_tokens)
|
| 194 |
+
|
| 195 |
+
def _prepare_data_summary(self, df):
|
| 196 |
+
"""Summarize the uploaded data"""
|
| 197 |
+
summary = f"Student performance data with {len(df)} rows and {len(df.columns)} columns.\n"
|
| 198 |
+
summary += "Columns: " + ", ".join(df.columns) + "\n"
|
| 199 |
+
summary += "First 3 rows:\n" + df.head(3).to_string(index=False)
|
| 200 |
+
return summary
|
| 201 |
+
|
| 202 |
+
def analyze_image(self, image, url, prompt):
|
| 203 |
+
"""Analyze image with InternVL model (synchronous, no streaming)"""
|
| 204 |
+
try:
|
| 205 |
+
if image is not None:
|
| 206 |
+
image_source = image
|
| 207 |
+
elif url and url.startswith(("http://", "https://")):
|
| 208 |
+
response = requests.get(url)
|
| 209 |
+
image_source = Image.open(BytesIO(response.content)).convert("RGB")
|
| 210 |
+
else:
|
| 211 |
+
return "⚠️ Please upload an image or enter a valid URL"
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
image_data = np.array(image_source.getdata()).reshape(
|
| 215 |
+
1, image_source.size[1], image_source.size[0], 3
|
| 216 |
+
).astype(np.byte)
|
| 217 |
+
image_tensor = ov.Tensor(image_data)
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
if self.internvl_pipe is None:
|
| 221 |
+
self.internvl_pipe = openvino_genai.VLMPipeline("internvl-ov", device="CPU")
|
| 222 |
+
|
| 223 |
+
with self.pipe_lock:
|
| 224 |
+
self.internvl_pipe.start_chat()
|
| 225 |
+
output = self.internvl_pipe.generate(prompt, image=image_tensor, max_new_tokens=100)
|
| 226 |
+
self.internvl_pipe.finish_chat()
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
return output
|
| 230 |
+
|
| 231 |
+
except Exception as e:
|
| 232 |
+
return f"❌ Error: {str(e)}"
|
| 233 |
+
|
| 234 |
+
def process_audio(self, data, sr):
|
| 235 |
+
"""Process audio data for speech recognition"""
|
| 236 |
+
try:
|
| 237 |
+
|
| 238 |
+
if data.ndim > 1:
|
| 239 |
+
data = np.mean(data, axis=1)
|
| 240 |
+
else:
|
| 241 |
+
data = data
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
data = data.astype(np.float32)
|
| 245 |
+
max_val = np.max(np.abs(data)) + 1e-7
|
| 246 |
+
data /= max_val
|
| 247 |
+
|
| 248 |
+
# Simple noise reduction
|
| 249 |
+
data = np.clip(data, -0.5, 0.5)
|
| 250 |
+
|
| 251 |
+
# Trim silence
|
| 252 |
+
energy = np.abs(data)
|
| 253 |
+
threshold = np.percentile(energy, 25)
|
| 254 |
+
mask = energy > threshold
|
| 255 |
+
indices = np.where(mask)[0]
|
| 256 |
+
|
| 257 |
+
if len(indices) > 0:
|
| 258 |
+
start = max(0, indices[0] - 1000)
|
| 259 |
+
end = min(len(data), indices[-1] + 1000)
|
| 260 |
+
data = data[start:end]
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
if sr != 16000:
|
| 264 |
+
|
| 265 |
+
new_length = int(len(data) * 16000 / sr)
|
| 266 |
+
|
| 267 |
+
data = np.interp(
|
| 268 |
+
np.linspace(0, len(data)-1, new_length),
|
| 269 |
+
np.arange(len(data)),
|
| 270 |
+
data
|
| 271 |
+
)
|
| 272 |
+
sr = 16000
|
| 273 |
+
|
| 274 |
+
return data
|
| 275 |
+
except Exception as e:
|
| 276 |
+
print(f"Audio processing error: {e}")
|
| 277 |
+
return np.array([], dtype=np.float32)
|
| 278 |
+
|
| 279 |
+
def transcribe(self, audio):
|
| 280 |
+
"""Transcribe audio using Whisper model with improved error handling"""
|
| 281 |
+
if audio is None:
|
| 282 |
+
return ""
|
| 283 |
+
sr, data = audio
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
if len(data)/sr < 0.5:
|
| 287 |
+
return ""
|
| 288 |
+
|
| 289 |
+
try:
|
| 290 |
+
processed = self.process_audio(data, sr)
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
if len(processed) < 8000:
|
| 294 |
+
return ""
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
result = self.whisper_pipe.generate(processed)
|
| 298 |
+
return result
|
| 299 |
+
except Exception as e:
|
| 300 |
+
print(f"Transcription error: {e}")
|
| 301 |
+
return "❌ Transcription failed - please try again"
|
| 302 |
+
|
| 303 |
+
def generate_lesson_plan(self, topic, duration, additional_instructions="", max_tokens=4096):
|
| 304 |
+
"""Generate a lesson plan based on document content"""
|
| 305 |
+
if not topic:
|
| 306 |
+
yield "⚠️ Please enter a lesson topic"
|
| 307 |
+
return
|
| 308 |
+
|
| 309 |
+
if not self.current_document_text:
|
| 310 |
+
yield "⚠️ Please upload and process a document first"
|
| 311 |
+
return
|
| 312 |
+
|
| 313 |
+
prompt = f"""As an expert educator, create a focused lesson plan using the provided content.
|
| 314 |
+
**Core Requirements:**
|
| 315 |
+
1. TOPIC: {topic}
|
| 316 |
+
2. TOTAL DURATION: {duration} periods
|
| 317 |
+
3. ADDITIONAL INSTRUCTIONS: {additional_instructions or 'None'}
|
| 318 |
+
**Content Summary:**
|
| 319 |
+
{self.current_document_text[:2500]}... [truncated]
|
| 320 |
+
**Output Structure:**
|
| 321 |
+
1. PERIOD ALLOCATION (Break topic into {duration} logical segments):
|
| 322 |
+
- Period 1: [Subtopic 1]
|
| 323 |
+
- Period 2: [Subtopic 2]
|
| 324 |
+
...
|
| 325 |
+
2. LEARNING OBJECTIVES (Max 3 bullet points)
|
| 326 |
+
3. TEACHING ACTIVITIES (One engaging method per period)
|
| 327 |
+
4. RESOURCES (Key materials from document)
|
| 328 |
+
5. ASSESSMENT (Simple checks for understanding)
|
| 329 |
+
6. PAGE REFERENCES (Specific source pages)
|
| 330 |
+
**Key Rules:**
|
| 331 |
+
- Strictly divide content into exactly {duration} periods
|
| 332 |
+
- Prioritize document content over creativity
|
| 333 |
+
- Keep objectives measurable
|
| 334 |
+
- Use only document resources
|
| 335 |
+
- Make page references specific"""
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
yield from self.generate_text_stream(prompt, max_tokens)
|
| 339 |
+
|
| 340 |
+
def fetch_images(self, query: str, num: int = DEFAULT_NUM_IMAGES) -> list:
|
| 341 |
+
"""Fetch unique images by requesting different result pages"""
|
| 342 |
+
if num <= 0:
|
| 343 |
+
return []
|
| 344 |
+
|
| 345 |
+
try:
|
| 346 |
+
service = build("customsearch", "v1", developerKey=GOOGLE_API_KEY)
|
| 347 |
+
image_links = []
|
| 348 |
+
seen_urls = set()
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
for start_index in range(1, num * 2, 2):
|
| 352 |
+
if len(image_links) >= num:
|
| 353 |
+
break
|
| 354 |
+
|
| 355 |
+
res = service.cse().list(
|
| 356 |
+
q=query,
|
| 357 |
+
cx=GOOGLE_CSE_ID,
|
| 358 |
+
searchType="image",
|
| 359 |
+
num=1,
|
| 360 |
+
start=start_index
|
| 361 |
+
).execute()
|
| 362 |
+
|
| 363 |
+
if "items" in res and res["items"]:
|
| 364 |
+
item = res["items"][0]
|
| 365 |
+
# Skip duplicates
|
| 366 |
+
if item["link"] not in seen_urls:
|
| 367 |
+
image_links.append(item["link"])
|
| 368 |
+
seen_urls.add(item["link"])
|
| 369 |
+
|
| 370 |
+
return image_links[:num]
|
| 371 |
+
except Exception as e:
|
| 372 |
+
print(f"Error in image fetching: {e}")
|
| 373 |
+
return []
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
ai_system = UnifiedAISystem()
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
css = """
|
| 380 |
+
:root {
|
| 381 |
+
--bg: #0D0D0D;
|
| 382 |
+
--surface: #1F1F1F;
|
| 383 |
+
--primary: #BB86FC;
|
| 384 |
+
--secondary: #03DAC6;
|
| 385 |
+
--accent: #CF6679;
|
| 386 |
+
--success: #4CAF50;
|
| 387 |
+
--warning: #FFB300;
|
| 388 |
+
--text: #FFFFFF;
|
| 389 |
+
--subtext: #B0B0B0;
|
| 390 |
+
--divider: #333333;
|
| 391 |
+
}
|
| 392 |
+
body, .gradio-container { background: var(--bg); color: var(--text); }
|
| 393 |
+
.user-msg,
|
| 394 |
+
.bot-msg,
|
| 395 |
+
.upload-box,
|
| 396 |
+
#question-input,
|
| 397 |
+
.mode-checkbox,
|
| 398 |
+
.system-info,
|
| 399 |
+
.lesson-plan { background: var(--surface); border-radius: 8px; color: var(--text); }
|
| 400 |
+
.user-msg,
|
| 401 |
+
.bot-msg { padding: 12px 16px; margin: 8px 0; line-height:1.5; border-left:4px solid var(--primary); box-shadow:0 2px 6px rgba(0,0,0,0.5); }
|
| 402 |
+
.bot-msg { border-color: var(--secondary); }
|
| 403 |
+
.upload-box { padding:16px; margin-bottom:16px; border:1px solid var(--divider); }
|
| 404 |
+
#question-input,
|
| 405 |
+
.mode-checkbox { padding:12px; border:1px solid var(--divider); }
|
| 406 |
+
.slider-container { margin:20px 0; padding:15px; border-radius:10px; background:var(--secondary); }
|
| 407 |
+
.system-info { padding:15px; margin:15px 0; border-left:4px solid var(--primary); }
|
| 408 |
+
.chat-image { max-height:100px; margin:4px; border-radius:8px; box-shadow:0 2px 6px rgba(0,0,0,0.5); cursor:pointer; transition:transform .2s; }
|
| 409 |
+
.chat-image:hover { transform:scale(1.05); box-shadow:0 4px 10px rgba(0,0,0,0.7); }
|
| 410 |
+
.modal { position:fixed; inset:0; background:rgba(0,0,0,0.9); display:none; cursor:zoom-out; }
|
| 411 |
+
.modal-content { position:absolute; top:50%; left:50%; transform:translate(-50%,-50%); max-width:90%; max-height:90%; padding:10px; border-radius:12px; background:var(--surface); }
|
| 412 |
+
.modal-img { max-width:100%; max-height:100%; border-radius:8px; }
|
| 413 |
+
.typing-indicator { display:inline-block; position:relative; width:40px; height:20px; }
|
| 414 |
+
.typing-dot { width:6px; height:6px; border-radius:50%; background:var(--text); position:absolute; animation:typing 1.4s infinite ease-in-out; }
|
| 415 |
+
.typing-dot:nth-child(1){left:0;}
|
| 416 |
+
.typing-dot:nth-child(2){left:12px;animation-delay:.2s}
|
| 417 |
+
.typing-dot:nth-child(3){left:24px;animation-delay:.4s}
|
| 418 |
+
@keyframes typing{0%,60%,100%{transform:translateY(0)}30%{transform:translateY(-5px)}}
|
| 419 |
+
.lesson-title { font-size:1.2em; font-weight:bold; color:var(--primary); margin-bottom:8px; }
|
| 420 |
+
.page-ref { display:inline-block; padding:3px 8px; margin:3px; border-radius:4px; background:var(--primary); color:var(--text); font-size:.9em; }
|
| 421 |
+
/* Scrollbar */
|
| 422 |
+
.chatbot::-webkit-scrollbar{width:8px}
|
| 423 |
+
.chatbot::-webkit-scrollbar-track{background:var(--surface);border-radius:4px}
|
| 424 |
+
.chatbot::-webkit-scrollbar-thumb{background:var(--primary);border-radius:4px}
|
| 425 |
+
.chatbot::-webkit-scrollbar-thumb:hover{background:var(--secondary)}
|
| 426 |
+
"""
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
with gr.Blocks(css=css, title="Unified EDU Assistant") as demo:
|
| 430 |
+
gr.Markdown("# 🤖 Unified EDU Assistant by Phanindra Reddy K")
|
| 431 |
+
|
| 432 |
+
|
| 433 |
+
gr.HTML("""
|
| 434 |
+
<div class="system-info">
|
| 435 |
+
<strong>Multi-Modal AI Assistant</strong>
|
| 436 |
+
<ul>
|
| 437 |
+
<li>Text & Voice Chat with Mistral-7B</li>
|
| 438 |
+
<li>Image Understanding with InternVL</li>
|
| 439 |
+
<li>Student Data Analysis</li>
|
| 440 |
+
<li>Visual Search with Google Images</li>
|
| 441 |
+
<li>Lesson Planning from Documents</li>
|
| 442 |
+
</ul>
|
| 443 |
+
</div>
|
| 444 |
+
""")
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
modal_html = """
|
| 448 |
+
<div class="modal" id="imageModal" onclick="this.style.display='none'">
|
| 449 |
+
<div class="modal-content">
|
| 450 |
+
<img class="modal-img" id="expandedImg">
|
| 451 |
+
</div>
|
| 452 |
+
</div>
|
| 453 |
+
<script>
|
| 454 |
+
function showImage(url) {
|
| 455 |
+
document.getElementById('expandedImg').src = url;
|
| 456 |
+
document.getElementById('imageModal').style.display = 'block';
|
| 457 |
+
}
|
| 458 |
+
</script>
|
| 459 |
+
"""
|
| 460 |
+
gr.HTML(modal_html)
|
| 461 |
+
|
| 462 |
+
chat_state = gr.State([])
|
| 463 |
+
with gr.Column(scale=2, elem_classes="chat-container"):
|
| 464 |
+
chatbot = gr.Chatbot(label="Conversation", height=500, bubble_full_width=False,
|
| 465 |
+
avatar_images=("user.png", "bot.png"), show_label=False)
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
with gr.Row():
|
| 469 |
+
chat_mode = gr.Checkbox(label="💬 General Chat", value=True, elem_classes="mode-checkbox")
|
| 470 |
+
student_mode = gr.Checkbox(label="🎓 Student Analytics", value=False, elem_classes="mode-checkbox")
|
| 471 |
+
image_mode = gr.Checkbox(label="🖼️ Image Analysis", value=False, elem_classes="mode-checkbox")
|
| 472 |
+
lesson_mode = gr.Checkbox(label="📝 Lesson Planning", value=False, elem_classes="mode-checkbox")
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
with gr.Column() as chat_inputs:
|
| 476 |
+
include_images = gr.Checkbox(label="Include Visuals", value=True)
|
| 477 |
+
user_input = gr.Textbox(
|
| 478 |
+
placeholder="Type your question here...",
|
| 479 |
+
label="Your Question",
|
| 480 |
+
container=False,
|
| 481 |
+
elem_id="question-input"
|
| 482 |
+
)
|
| 483 |
+
with gr.Row():
|
| 484 |
+
max_tokens = gr.Slider(
|
| 485 |
+
minimum=10,
|
| 486 |
+
maximum=7910,
|
| 487 |
+
value=2048,
|
| 488 |
+
step=100,
|
| 489 |
+
label="Response Length (Tokens)"
|
| 490 |
+
)
|
| 491 |
+
num_images = gr.Slider(
|
| 492 |
+
minimum=0,
|
| 493 |
+
maximum=5,
|
| 494 |
+
value=1,
|
| 495 |
+
step=1,
|
| 496 |
+
label="Number of Images",
|
| 497 |
+
visible=True
|
| 498 |
+
)
|
| 499 |
+
|
| 500 |
+
|
| 501 |
+
with gr.Column(visible=False) as student_inputs:
|
| 502 |
+
file_upload = gr.File(label="CSV/Excel File", file_types=[".csv", ".xlsx"], type="filepath")
|
| 503 |
+
student_question = gr.Textbox(
|
| 504 |
+
placeholder="Ask questions about student data...",
|
| 505 |
+
label="Your Question",
|
| 506 |
+
elem_id="question-input"
|
| 507 |
+
)
|
| 508 |
+
student_status = gr.Markdown("No file loaded")
|
| 509 |
+
|
| 510 |
+
|
| 511 |
+
with gr.Column(visible=False) as image_inputs:
|
| 512 |
+
image_upload = gr.Image(type="pil", label="Upload Image")
|
| 513 |
+
image_url = gr.Textbox(
|
| 514 |
+
label="OR Enter Image URL",
|
| 515 |
+
placeholder="https://example.com/image.jpg",
|
| 516 |
+
elem_id="question-input"
|
| 517 |
+
)
|
| 518 |
+
image_question = gr.Textbox(
|
| 519 |
+
placeholder="Ask questions about the image...",
|
| 520 |
+
label="Your Question",
|
| 521 |
+
elem_id="question-input"
|
| 522 |
+
)
|
| 523 |
+
|
| 524 |
+
|
| 525 |
+
with gr.Column(visible=False) as lesson_inputs:
|
| 526 |
+
gr.Markdown("### 📚 Lesson Planning")
|
| 527 |
+
doc_upload = gr.File(
|
| 528 |
+
label="Upload Curriculum Document (PDF/DOCX)",
|
| 529 |
+
file_types=[".pdf", ".docx"],
|
| 530 |
+
type="filepath"
|
| 531 |
+
)
|
| 532 |
+
doc_status = gr.Markdown("No document uploaded")
|
| 533 |
+
|
| 534 |
+
with gr.Row():
|
| 535 |
+
topic_input = gr.Textbox(
|
| 536 |
+
label="Lesson Topic",
|
| 537 |
+
placeholder="Enter the main topic for the lesson plan"
|
| 538 |
+
)
|
| 539 |
+
duration_input = gr.Number(
|
| 540 |
+
label="Total Periods",
|
| 541 |
+
value=5,
|
| 542 |
+
minimum=1,
|
| 543 |
+
maximum=20,
|
| 544 |
+
step=1
|
| 545 |
+
)
|
| 546 |
+
|
| 547 |
+
additional_instructions = gr.Textbox(
|
| 548 |
+
label="Additional Requirements (optional)",
|
| 549 |
+
placeholder="Specific teaching methods, resources, or special considerations..."
|
| 550 |
+
)
|
| 551 |
+
|
| 552 |
+
generate_btn = gr.Button("Generate Lesson Plan", variant="primary")
|
| 553 |
+
|
| 554 |
+
|
| 555 |
+
with gr.Row():
|
| 556 |
+
submit_btn = gr.Button("Send", variant="primary")
|
| 557 |
+
mic_btn = gr.Button("Transcribe Voice", variant="secondary")
|
| 558 |
+
mic = gr.Audio(sources=["microphone"], type="numpy", label="Voice Input")
|
| 559 |
+
|
| 560 |
+
|
| 561 |
+
def toggle_modes(chat, student, image, lesson):
|
| 562 |
+
return [
|
| 563 |
+
gr.update(visible=chat),
|
| 564 |
+
gr.update(visible=student),
|
| 565 |
+
gr.update(visible=image),
|
| 566 |
+
gr.update(visible=lesson)
|
| 567 |
+
]
|
| 568 |
+
|
| 569 |
+
def load_student_file(file_path):
|
| 570 |
+
success, message = ai_system.load_data(file_path)
|
| 571 |
+
return message
|
| 572 |
+
|
| 573 |
+
def process_document(file_path):
|
| 574 |
+
if not file_path:
|
| 575 |
+
return "⚠️ Please select a document first"
|
| 576 |
+
success, message = ai_system.extract_text_from_document(file_path)
|
| 577 |
+
return message
|
| 578 |
+
|
| 579 |
+
def render_history(history):
|
| 580 |
+
"""Render chat history with images and proper formatting"""
|
| 581 |
+
rendered = []
|
| 582 |
+
for user_msg, bot_msg, image_links in history:
|
| 583 |
+
user_html = f"<div class='user-msg'>{user_msg}</div>"
|
| 584 |
+
|
| 585 |
+
|
| 586 |
+
bot_text = str(bot_msg)
|
| 587 |
+
|
| 588 |
+
if "Lesson Plan:" in bot_text:
|
| 589 |
+
bot_html = f"<div class='lesson-plan'>{bot_text}</div>"
|
| 590 |
+
else:
|
| 591 |
+
bot_html = f"<div class='bot-msg'>{bot_text}</div>"
|
| 592 |
+
|
| 593 |
+
# Add images if available
|
| 594 |
+
if image_links:
|
| 595 |
+
images_html = "".join(
|
| 596 |
+
f"<img src='{url}' class='chat-image' onclick='showImage(\"{url}\")' />"
|
| 597 |
+
for url in image_links
|
| 598 |
+
)
|
| 599 |
+
bot_html += f"<br><br><b>📸 Related Visuals:</b><br><div style='display: flex; flex-wrap: wrap;'>{images_html}</div>"
|
| 600 |
+
|
| 601 |
+
rendered.append((user_html, bot_html))
|
| 602 |
+
return rendered
|
| 603 |
+
|
| 604 |
+
def respond(message, history, chat, student, image, lesson,
|
| 605 |
+
tokens, student_q, image_q, image_upload, image_url,
|
| 606 |
+
include_visuals, num_imgs, topic, duration, additional):
|
| 607 |
+
"""
|
| 608 |
+
1. Use actual_message (depending on mode) instead of raw `message`.
|
| 609 |
+
2. Convert any non‐string Bot response (like VLMDecodedResults) to str().
|
| 610 |
+
3. Disable the input box during streaming, then re-enable it at the end.
|
| 611 |
+
"""
|
| 612 |
+
updated_history = list(history)
|
| 613 |
+
|
| 614 |
+
|
| 615 |
+
if student:
|
| 616 |
+
actual_message = student_q
|
| 617 |
+
elif image:
|
| 618 |
+
actual_message = image_q
|
| 619 |
+
elif lesson:
|
| 620 |
+
actual_message = f"Generate lesson plan for: {topic} ({duration} periods)"
|
| 621 |
+
if additional:
|
| 622 |
+
actual_message += f"\nAdditional: {additional}"
|
| 623 |
+
else:
|
| 624 |
+
actual_message = message
|
| 625 |
+
|
| 626 |
+
|
| 627 |
+
typing_html = "<div class='typing-indicator'><div class='typing-dot'></div><div class='typing-dot'></div><div class='typing-dot'></div></div>"
|
| 628 |
+
updated_history.append((actual_message, typing_html, []))
|
| 629 |
+
|
| 630 |
+
yield render_history(updated_history), gr.update(value="", interactive=False), updated_history
|
| 631 |
+
|
| 632 |
+
full_response = ""
|
| 633 |
+
images = []
|
| 634 |
+
|
| 635 |
+
try:
|
| 636 |
+
if chat:
|
| 637 |
+
|
| 638 |
+
for chunk in ai_system.generate_text_stream(actual_message, tokens):
|
| 639 |
+
full_response = chunk
|
| 640 |
+
updated_history[-1] = (actual_message, full_response, [])
|
| 641 |
+
yield render_history(updated_history), gr.update(value="", interactive=False), updated_history
|
| 642 |
+
|
| 643 |
+
if include_visuals:
|
| 644 |
+
images = ai_system.fetch_images(actual_message, num_imgs)
|
| 645 |
+
|
| 646 |
+
elif student:
|
| 647 |
+
|
| 648 |
+
if ai_system.current_df is None:
|
| 649 |
+
full_response = "⚠️ Please upload a student data file first"
|
| 650 |
+
else:
|
| 651 |
+
for chunk in ai_system.analyze_student_data(student_q, tokens):
|
| 652 |
+
full_response = chunk
|
| 653 |
+
updated_history[-1] = (actual_message, full_response, [])
|
| 654 |
+
yield render_history(updated_history), gr.update(value="", interactive=False), updated_history
|
| 655 |
+
|
| 656 |
+
elif image:
|
| 657 |
+
|
| 658 |
+
if (not image_upload) and (not image_url):
|
| 659 |
+
full_response = "⚠️ Please upload an image or enter a URL"
|
| 660 |
+
else:
|
| 661 |
+
|
| 662 |
+
result_obj = ai_system.analyze_image(image_upload, image_url, image_q)
|
| 663 |
+
full_response = str(result_obj)
|
| 664 |
+
|
| 665 |
+
elif lesson:
|
| 666 |
+
|
| 667 |
+
if not topic:
|
| 668 |
+
full_response = "⚠️ Please enter a lesson topic"
|
| 669 |
+
else:
|
| 670 |
+
duration = int(duration) if duration else 5
|
| 671 |
+
for chunk in ai_system.generate_lesson_plan(topic, duration, additional, tokens):
|
| 672 |
+
full_response = chunk
|
| 673 |
+
updated_history[-1] = (actual_message, full_response, [])
|
| 674 |
+
yield render_history(updated_history), gr.update(value="", interactive=False), updated_history
|
| 675 |
+
|
| 676 |
+
|
| 677 |
+
updated_history[-1] = (actual_message, full_response, images)
|
| 678 |
+
if len(updated_history) > MAX_HISTORY_TURNS:
|
| 679 |
+
updated_history = updated_history[-MAX_HISTORY_TURNS:]
|
| 680 |
+
|
| 681 |
+
except Exception as e:
|
| 682 |
+
error_msg = f"❌ Error: {str(e)}"
|
| 683 |
+
updated_history[-1] = (actual_message, error_msg, [])
|
| 684 |
+
|
| 685 |
+
|
| 686 |
+
yield render_history(updated_history), gr.update(value="", interactive=True), updated_history
|
| 687 |
+
|
| 688 |
+
# Voice transcription
|
| 689 |
+
def transcribe_audio(audio):
|
| 690 |
+
return ai_system.transcribe(audio)
|
| 691 |
+
|
| 692 |
+
|
| 693 |
+
chat_mode.change(fn=toggle_modes, inputs=[chat_mode, student_mode, image_mode, lesson_mode],
|
| 694 |
+
outputs=[chat_inputs, student_inputs, image_inputs, lesson_inputs])
|
| 695 |
+
student_mode.change(fn=toggle_modes, inputs=[chat_mode, student_mode, image_mode, lesson_mode],
|
| 696 |
+
outputs=[chat_inputs, student_inputs, image_inputs, lesson_inputs])
|
| 697 |
+
image_mode.change(fn=toggle_modes, inputs=[chat_mode, student_mode, image_mode, lesson_mode],
|
| 698 |
+
outputs=[chat_inputs, student_inputs, image_inputs, lesson_inputs])
|
| 699 |
+
lesson_mode.change(fn=toggle_modes, inputs=[chat_mode, student_mode, image_mode, lesson_mode],
|
| 700 |
+
outputs=[chat_inputs, student_inputs, image_inputs, lesson_inputs])
|
| 701 |
+
|
| 702 |
+
# File upload handler
|
| 703 |
+
file_upload.change(fn=load_student_file, inputs=file_upload, outputs=student_status)
|
| 704 |
+
|
| 705 |
+
# Document upload handler
|
| 706 |
+
doc_upload.change(fn=process_document, inputs=doc_upload, outputs=doc_status)
|
| 707 |
+
|
| 708 |
+
mic_btn.click(fn=transcribe_audio, inputs=mic, outputs=user_input)
|
| 709 |
+
|
| 710 |
+
# Submit handler
|
| 711 |
+
submit_btn.click(
|
| 712 |
+
fn=respond,
|
| 713 |
+
inputs=[
|
| 714 |
+
user_input, chat_state, chat_mode, student_mode, image_mode, lesson_mode,
|
| 715 |
+
max_tokens, student_question, image_question, image_upload, image_url,
|
| 716 |
+
include_images, num_images,
|
| 717 |
+
topic_input, duration_input, additional_instructions
|
| 718 |
+
],
|
| 719 |
+
outputs=[chatbot, user_input, chat_state]
|
| 720 |
+
)
|
| 721 |
+
|
| 722 |
+
|
| 723 |
+
generate_btn.click(
|
| 724 |
+
fn=respond,
|
| 725 |
+
inputs=[
|
| 726 |
+
gr.Textbox(value="Generate lesson plan", visible=False),
|
| 727 |
+
chat_state,
|
| 728 |
+
chat_mode, student_mode, image_mode, lesson_mode,
|
| 729 |
+
max_tokens,
|
| 730 |
+
gr.Textbox(visible=False),
|
| 731 |
+
gr.Textbox(visible=False),
|
| 732 |
+
gr.Image(visible=False),
|
| 733 |
+
gr.Textbox(visible=False),
|
| 734 |
+
gr.Checkbox(visible=False),
|
| 735 |
+
gr.Slider(visible=False),
|
| 736 |
+
topic_input,
|
| 737 |
+
duration_input,
|
| 738 |
+
additional_instructions
|
| 739 |
+
],
|
| 740 |
+
outputs=[chatbot, user_input, chat_state]
|
| 741 |
+
)
|
| 742 |
+
|
| 743 |
+
if __name__ == "__main__":
|
| 744 |
+
demo.launch(share=True, debug=True)
|