Spaces:
Sleeping
Sleeping
enhance summarize endpoint to dynamically adjust summary length based on input word count and return parameters used
Browse files
main.py
CHANGED
|
@@ -5,16 +5,47 @@ from transformers import pipeline
|
|
| 5 |
app = FastAPI()
|
| 6 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 7 |
|
| 8 |
-
|
| 9 |
class TextInput(BaseModel):
|
| 10 |
text: str
|
| 11 |
|
| 12 |
-
|
| 13 |
@app.get("/")
|
| 14 |
async def root():
|
| 15 |
return {"message": "Welcome to the Text Summarization API!"}
|
| 16 |
|
| 17 |
@app.post("/summarize")
|
| 18 |
async def summarize_text(input: TextInput):
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
app = FastAPI()
|
| 6 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 7 |
|
|
|
|
| 8 |
class TextInput(BaseModel):
|
| 9 |
text: str
|
| 10 |
|
|
|
|
| 11 |
@app.get("/")
|
| 12 |
async def root():
|
| 13 |
return {"message": "Welcome to the Text Summarization API!"}
|
| 14 |
|
| 15 |
@app.post("/summarize")
|
| 16 |
async def summarize_text(input: TextInput):
|
| 17 |
+
# Count approximate number of words (could be improved with tokenizer count in the future)
|
| 18 |
+
word_count = len(input.text.split())
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
if word_count < 50:
|
| 22 |
+
max_length = max(10, word_count // 2)
|
| 23 |
+
min_length = max(3, word_count // 4)
|
| 24 |
+
elif word_count < 200:
|
| 25 |
+
max_length = max(50, word_count // 3)
|
| 26 |
+
min_length = max(15, word_count // 6)
|
| 27 |
+
else:
|
| 28 |
+
max_length = max(100, word_count // 4)
|
| 29 |
+
min_length = max(30, word_count // 8)
|
| 30 |
+
|
| 31 |
+
# Prevent max_length from being too large (BART has token limits)
|
| 32 |
+
max_length = min(max_length, 1024)
|
| 33 |
+
|
| 34 |
+
# Generate summary with dynamic parameters
|
| 35 |
+
summary = summarizer(
|
| 36 |
+
input.text,
|
| 37 |
+
max_length=max_length,
|
| 38 |
+
min_length=min_length,
|
| 39 |
+
do_sample=True,
|
| 40 |
+
temperature=0.7,
|
| 41 |
+
num_beams=4
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
return {
|
| 45 |
+
"summary": summary[0]["summary_text"],
|
| 46 |
+
"parameters_used": {
|
| 47 |
+
"input_word_count": word_count,
|
| 48 |
+
"max_length": max_length,
|
| 49 |
+
"min_length": min_length
|
| 50 |
+
}
|
| 51 |
+
}
|