Spaces:
Running
Running
File size: 3,117 Bytes
6ddd7e4 743b8f5 b5b5082 a8f789a 7890f41 f4b1b5b 7890f41 743b8f5 7b8a54e ad0617c 3c03d8e 7b8a54e ad0617c 743b8f5 b5b5082 72db052 743b8f5 b5b5082 743b8f5 b5b5082 7890f41 f4b1b5b b5b5082 a8f789a f4b1b5b a8f789a ea7eb85 f4b1b5b ea7eb85 b5b5082 f4b1b5b 743b8f5 b5b5082 58068be b5b5082 e30854e f4b1b5b b5b5082 3f3d89a b5b5082 ea7eb85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import spaces
import os, sys, logging
sys.path.append("neutts-air")
from neuttsair.neutts import NeuTTSAir
import numpy as np
import gradio as gr
from groq import Groq
SAMPLES_PATH = os.path.join(os.getcwd(), "neutts-air", "samples")
DEFAULT_REF_TEXT = "So I'm live on radio. And I say, well, my dear friend James here clearly, and the whole room just froze. Turns out I'd completely misspoken and mentioned our other friend."
DEFAULT_REF_PATH = os.path.join(SAMPLES_PATH, "dave.wav")
DEFAULT_GEN_TEXT = "My name is Dave, and um, I'm from London."
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
stream=sys.stdout
)
tts = NeuTTSAir(
backbone_repo="neuphonic/neutts-air",
backbone_device="cpu",
codec_repo="neuphonic/neucodec",
codec_device="cpu"
)
def transcribe(file_path: str):
client = Groq()
with open(file_path, "rb") as file:
transcription = client.audio.transcriptions.create(
file=(file_path, file.read()),
model="whisper-large-v3-turbo",
temperature=0,
response_format="verbose_json",
)
if len(transcription.text) <= 0: logging.warn("Error while transcripting the reference audio.")
return transcription.text
@spaces.GPU()
def infer(
gen_text: str,
ref_text: str = DEFAULT_REF_TEXT,
ref_audio_path: str = DEFAULT_REF_PATH,
) -> tuple[int, np.ndarray]:
"""
Generates speech using NeuTTS-Air given a reference audio and text, and new text to synthesize.
Args:
gen_text (str): The new text to synthesize.
ref_text (str): The text corresponding to the reference audio.
ref_audio_path (str): The file path to the reference audio.
Returns:
tuple [int, np.ndarray]: A tuple containing the sample rate (24000) and the generated audio waveform as a numpy array.
"""
if gen_text is None or not len(gen_text):
raise Exception("Please insert the new text to synthesize.")
if ref_audio_path != DEFAULT_REF_PATH and ref_text == DEFAULT_REF_TEXT:
ref_text = ""
if not len(ref_text):
ref_text = transcribe(ref_audio_path)
logging.info(f"Using reference: {ref_audio_path}")
gr.Info("Starting inference request!")
gr.Info("Encoding reference...")
ref_codes = tts.encode_reference(ref_audio_path)
gr.Info(f"Generating audio for input text: {gen_text}")
wav = tts.infer(gen_text, ref_codes, ref_text)
return (24_000, wav)
demo = gr.Interface(
fn=infer,
inputs=[
gr.Textbox(label="Text to Generate", value=DEFAULT_GEN_TEXT),
gr.Textbox(label="Reference Text (Optional)", value=DEFAULT_REF_TEXT),
gr.Audio(type="filepath", label="Reference Audio", value=DEFAULT_REF_PATH),
],
outputs=gr.Audio(type="numpy", label="Generated Speech"),
title="NeuTTS-Air☁️",
description="Upload a reference audio sample, provide the reference text, and enter new text to synthesize."
)
if __name__ == "__main__":
demo.launch(allowed_paths=[SAMPLES_PATH], mcp_server=True, inbrowser=True) |