neutts-air / app.py
playmak3r's picture
disable mcp server
fa52dcf
import spaces
import os, sys, logging
sys.path.append("neutts-air")
from neuttsair.neutts import NeuTTSAir
import numpy as np
import gradio as gr
from groq import Groq
SAMPLES_PATH = os.path.join(os.getcwd(), "neutts-air", "samples")
DEFAULT_REF_TEXT = "So I'm live on radio. And I say, well, my dear friend James here clearly, and the whole room just froze. Turns out I'd completely misspoken and mentioned our other friend."
DEFAULT_REF_PATH = os.path.join(SAMPLES_PATH, "dave.wav")
DEFAULT_GEN_TEXT = "My name is Dave, and um, I'm from London."
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
stream=sys.stdout
)
tts = NeuTTSAir(
backbone_repo="neuphonic/neutts-air",
backbone_device="cpu",
codec_repo="neuphonic/neucodec",
codec_device="cpu"
)
def transcribe(file_path: str):
client = Groq()
with open(file_path, "rb") as file:
transcription = client.audio.transcriptions.create(
file=(file_path, file.read()),
model="whisper-large-v3-turbo",
temperature=0,
response_format="verbose_json",
)
if len(transcription.text) <= 0: logging.warn("Error while transcripting the reference audio.")
return transcription.text
@spaces.GPU()
def infer(
gen_text: str,
ref_text: str = DEFAULT_REF_TEXT,
ref_audio_path: str = DEFAULT_REF_PATH,
) -> tuple[int, np.ndarray]:
"""
Generates speech using NeuTTS-Air given a reference audio and text, and new text to synthesize.
Args:
gen_text (str): The new text to synthesize.
ref_text (str): The text corresponding to the reference audio.
ref_audio_path (str): The file path to the reference audio.
Returns:
tuple [int, np.ndarray]: A tuple containing the sample rate (24000) and the generated audio waveform as a numpy array.
"""
if gen_text is None or not len(gen_text):
raise Exception("Please insert the new text to synthesize.")
if ref_audio_path != DEFAULT_REF_PATH and ref_text == DEFAULT_REF_TEXT:
ref_text = ""
if not len(ref_text):
ref_text = transcribe(ref_audio_path)
logging.info(f"Using reference: {ref_audio_path}")
gr.Info("Starting inference request!")
gr.Info("Encoding reference...")
ref_codes = tts.encode_reference(ref_audio_path)
gr.Info(f"Generating audio for input text: {gen_text}")
wav = tts.infer(gen_text, ref_codes, ref_text)
return (24_000, wav)
demo = gr.Interface(
fn=infer,
inputs=[
gr.Textbox(label="Text to Generate", value=DEFAULT_GEN_TEXT),
gr.Textbox(label="Reference Text (Optional)", value=DEFAULT_REF_TEXT),
gr.Audio(type="filepath", label="Reference Audio", value=DEFAULT_REF_PATH),
],
outputs=gr.Audio(type="numpy", label="Generated Speech"),
title="NeuTTS-Air☁️",
description="Upload a reference audio sample, provide the reference text, and enter new text to synthesize."
)
if __name__ == "__main__":
demo.queue(max_size=10).launch(allowed_paths=[SAMPLES_PATH], mcp_server=False, inbrowser=True)