Spaces:
Sleeping
Sleeping
Commit
·
badcb49
1
Parent(s):
da7dbd0
Edit the demo
Browse files- application.py +10 -10
- src/application/content_detection.py +12 -4
- src/texts/SimLLM/Refactor/bart_score.py +0 -205
- src/texts/SimLLM/Refactor/config.py +0 -115
- src/texts/SimLLM/Refactor/evaluation.py +0 -84
- src/texts/SimLLM/Refactor/main_text.py +0 -106
- src/texts/SimLLM/Refactor/models.py +0 -842
- src/texts/SimLLM/Refactor/proofreading.py +0 -354
- src/texts/SimLLM/Refactor/readme.md +0 -67
- src/texts/SimLLM/Refactor/utils.py +0 -527
- src/texts/SimLLM/SimLLM.py +0 -1667
- src/texts/SimLLM/bart_score.py +0 -136
application.py
CHANGED
|
@@ -4,7 +4,7 @@ import gradio as gr
|
|
| 4 |
import requests
|
| 5 |
from PIL import Image
|
| 6 |
|
| 7 |
-
from src.application.content_detection import
|
| 8 |
from src.application.url_reader import URLReader
|
| 9 |
from src.application.content_generation import generate_fake_image, generate_fake_text, replace_text
|
| 10 |
|
|
@@ -46,16 +46,16 @@ def generate_analysis_report(news_title:str, news_content: str, news_image: Imag
|
|
| 46 |
news_analysis.load_news(news_title, news_content, news_image)
|
| 47 |
return news_analysis.generate_analysis_report(), news_analysis.analyze_details()
|
| 48 |
|
| 49 |
-
news_analysis =
|
| 50 |
# Define the GUI
|
| 51 |
with gr.Blocks() as demo:
|
| 52 |
-
gr.Markdown("#
|
| 53 |
|
| 54 |
with gr.Row():
|
| 55 |
# SETTINGS
|
| 56 |
with gr.Column(scale=1):
|
| 57 |
with gr.Accordion("Settings"):
|
| 58 |
-
gr.Markdown("
|
| 59 |
|
| 60 |
with gr.Accordion("1. Enter a URL"):
|
| 61 |
url_input = gr.Textbox(
|
|
@@ -65,14 +65,14 @@ with gr.Blocks() as demo:
|
|
| 65 |
)
|
| 66 |
load_button = gr.Button("Load URL")
|
| 67 |
|
| 68 |
-
with gr.Accordion("2. Select content-generation models", open=True):
|
| 69 |
with gr.Row():
|
| 70 |
text_generation_model = gr.Dropdown(choices=AZURE_TEXT_MODEL, label="Text-generation model")
|
| 71 |
image_generation_model = gr.Dropdown(choices=AZURE_IMAGE_MODEL, label="Image-generation model")
|
| 72 |
generate_text_button = gr.Button("Generate text")
|
| 73 |
generate_image_button = gr.Button("Generate image")
|
| 74 |
|
| 75 |
-
with gr.Accordion("3. Replace any terms", open=True):
|
| 76 |
replace_df = gr.Dataframe(
|
| 77 |
headers=["Find what:", "Replace with:"],
|
| 78 |
datatype=["str", "str"],
|
|
@@ -84,15 +84,15 @@ with gr.Blocks() as demo:
|
|
| 84 |
|
| 85 |
# GENERATED CONTENT
|
| 86 |
with gr.Column(scale=1):
|
| 87 |
-
with gr.Accordion("
|
| 88 |
news_title = gr.Textbox(label="Title", value="")
|
| 89 |
news_image = gr.Image(label="Image", type="filepath")
|
| 90 |
news_content = gr.Textbox(label="Content", value="", lines=12)
|
| 91 |
|
| 92 |
-
#
|
| 93 |
with gr.Column(scale=1):
|
| 94 |
-
with gr.Accordion("
|
| 95 |
-
detection_button = gr.Button("
|
| 96 |
analyzed_information = gr.HTML()
|
| 97 |
with gr.Accordion("Detailed information"):
|
| 98 |
detailed_analysis = gr.HTML()
|
|
|
|
| 4 |
import requests
|
| 5 |
from PIL import Image
|
| 6 |
|
| 7 |
+
from src.application.content_detection import NewsVerification
|
| 8 |
from src.application.url_reader import URLReader
|
| 9 |
from src.application.content_generation import generate_fake_image, generate_fake_text, replace_text
|
| 10 |
|
|
|
|
| 46 |
news_analysis.load_news(news_title, news_content, news_image)
|
| 47 |
return news_analysis.generate_analysis_report(), news_analysis.analyze_details()
|
| 48 |
|
| 49 |
+
news_analysis = NewsVerification()
|
| 50 |
# Define the GUI
|
| 51 |
with gr.Blocks() as demo:
|
| 52 |
+
gr.Markdown("# NEWS VERIFICATION")
|
| 53 |
|
| 54 |
with gr.Row():
|
| 55 |
# SETTINGS
|
| 56 |
with gr.Column(scale=1):
|
| 57 |
with gr.Accordion("Settings"):
|
| 58 |
+
gr.Markdown("Give an URL or fill in news by yourself")
|
| 59 |
|
| 60 |
with gr.Accordion("1. Enter a URL"):
|
| 61 |
url_input = gr.Textbox(
|
|
|
|
| 65 |
)
|
| 66 |
load_button = gr.Button("Load URL")
|
| 67 |
|
| 68 |
+
with gr.Accordion("2. Select content-generation models", open=True, visible=False):
|
| 69 |
with gr.Row():
|
| 70 |
text_generation_model = gr.Dropdown(choices=AZURE_TEXT_MODEL, label="Text-generation model")
|
| 71 |
image_generation_model = gr.Dropdown(choices=AZURE_IMAGE_MODEL, label="Image-generation model")
|
| 72 |
generate_text_button = gr.Button("Generate text")
|
| 73 |
generate_image_button = gr.Button("Generate image")
|
| 74 |
|
| 75 |
+
with gr.Accordion("3. Replace any terms", open=True, visible=False):
|
| 76 |
replace_df = gr.Dataframe(
|
| 77 |
headers=["Find what:", "Replace with:"],
|
| 78 |
datatype=["str", "str"],
|
|
|
|
| 84 |
|
| 85 |
# GENERATED CONTENT
|
| 86 |
with gr.Column(scale=1):
|
| 87 |
+
with gr.Accordion("Input News"):
|
| 88 |
news_title = gr.Textbox(label="Title", value="")
|
| 89 |
news_image = gr.Image(label="Image", type="filepath")
|
| 90 |
news_content = gr.Textbox(label="Content", value="", lines=12)
|
| 91 |
|
| 92 |
+
# NEWS ANALYSIS REPORT
|
| 93 |
with gr.Column(scale=1):
|
| 94 |
+
with gr.Accordion("News Analysis"):
|
| 95 |
+
detection_button = gr.Button("Verify news")
|
| 96 |
analyzed_information = gr.HTML()
|
| 97 |
with gr.Accordion("Detailed information"):
|
| 98 |
detailed_analysis = gr.HTML()
|
src/application/content_detection.py
CHANGED
|
@@ -4,7 +4,7 @@ from src.application.text.model_detection import detect_text_by_ai_model
|
|
| 4 |
from src.application.text.search_detection import check_human, detect_text_by_relative_search
|
| 5 |
|
| 6 |
|
| 7 |
-
class
|
| 8 |
def __init__(self):
|
| 9 |
self.news_text = ""
|
| 10 |
self.news_title = ""
|
|
@@ -156,13 +156,21 @@ class NewsAnalysis():
|
|
| 156 |
if self.text_referent_url is None:
|
| 157 |
referred_news = "<li>No referent information</li>"
|
| 158 |
else:
|
| 159 |
-
|
| 160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
if self.image_referent_url is None:
|
| 163 |
referred_image = "<li>No referent information</li>"
|
| 164 |
else:
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
html_template = f"""
|
| 168 |
<div>
|
|
|
|
| 4 |
from src.application.text.search_detection import check_human, detect_text_by_relative_search
|
| 5 |
|
| 6 |
|
| 7 |
+
class NewsVerification():
|
| 8 |
def __init__(self):
|
| 9 |
self.news_text = ""
|
| 10 |
self.news_title = ""
|
|
|
|
| 156 |
if self.text_referent_url is None:
|
| 157 |
referred_news = "<li>No referent information</li>"
|
| 158 |
else:
|
| 159 |
+
if len(self.text_referent_url) > 40:
|
| 160 |
+
url_max_length = 40
|
| 161 |
+
else:
|
| 162 |
+
url_max_length = len(self.text_referent_url)
|
| 163 |
+
|
| 164 |
+
referred_news = f"""<li><a href="{self.text_referent_url}" target="_blank">{"Referred news: " + self.text_referent_url[:url_max_length] + "..."}</a></li>"""
|
| 165 |
|
| 166 |
if self.image_referent_url is None:
|
| 167 |
referred_image = "<li>No referent information</li>"
|
| 168 |
else:
|
| 169 |
+
if len(self.image_referent_url) > 40:
|
| 170 |
+
url_max_length = 40
|
| 171 |
+
else:
|
| 172 |
+
url_max_length = len(self.text_referent_url)
|
| 173 |
+
referred_image = f"""<li><a href="{self.image_referent_url}" target="_blank">{"Referred news: " + self.image_referent_url[:url_max_length] + "..."}</a></li>"""
|
| 174 |
|
| 175 |
html_template = f"""
|
| 176 |
<div>
|
src/texts/SimLLM/Refactor/bart_score.py
DELETED
|
@@ -1,205 +0,0 @@
|
|
| 1 |
-
# %%
|
| 2 |
-
import traceback
|
| 3 |
-
from typing import List
|
| 4 |
-
|
| 5 |
-
import numpy as np
|
| 6 |
-
import torch
|
| 7 |
-
import torch.nn as nn
|
| 8 |
-
from transformers import (
|
| 9 |
-
BartForConditionalGeneration,
|
| 10 |
-
BartTokenizer,
|
| 11 |
-
)
|
| 12 |
-
|
| 13 |
-
from texts.config import (
|
| 14 |
-
BATCH_SIZE,
|
| 15 |
-
bart_scorer,
|
| 16 |
-
)
|
| 17 |
-
from texts.utils import normalize_text
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
class BARTScorer:
|
| 21 |
-
def __init__(
|
| 22 |
-
self,
|
| 23 |
-
device="cuda:0",
|
| 24 |
-
max_length=1024,
|
| 25 |
-
checkpoint="facebook/bart-large-cnn",
|
| 26 |
-
):
|
| 27 |
-
# Set up model
|
| 28 |
-
self.device = device
|
| 29 |
-
self.max_length = max_length
|
| 30 |
-
self.tokenizer = BartTokenizer.from_pretrained(checkpoint)
|
| 31 |
-
self.model = BartForConditionalGeneration.from_pretrained(checkpoint)
|
| 32 |
-
self.model.eval()
|
| 33 |
-
self.model.to(device)
|
| 34 |
-
|
| 35 |
-
# Set up loss
|
| 36 |
-
self.loss_fct = nn.NLLLoss(
|
| 37 |
-
reduction="none",
|
| 38 |
-
ignore_index=self.model.config.pad_token_id,
|
| 39 |
-
)
|
| 40 |
-
self.lsm = nn.LogSoftmax(dim=1)
|
| 41 |
-
|
| 42 |
-
def load(self, path=None):
|
| 43 |
-
"""Load model from paraphrase finetuning"""
|
| 44 |
-
if path is None:
|
| 45 |
-
path = "./bart.pth"
|
| 46 |
-
|
| 47 |
-
self.model.load_state_dict(torch.load(path, map_location=self.device))
|
| 48 |
-
|
| 49 |
-
def score(self, srcs, tgts, batch_size=16):
|
| 50 |
-
"""Score a batch of examples"""
|
| 51 |
-
score_list = []
|
| 52 |
-
for i in range(0, len(srcs), batch_size):
|
| 53 |
-
src_list = srcs[i : i + batch_size]
|
| 54 |
-
tgt_list = tgts[i : i + batch_size]
|
| 55 |
-
try:
|
| 56 |
-
with torch.no_grad():
|
| 57 |
-
encoded_src = self.tokenizer(
|
| 58 |
-
src_list,
|
| 59 |
-
max_length=self.max_length,
|
| 60 |
-
truncation=True,
|
| 61 |
-
padding=True,
|
| 62 |
-
return_tensors="pt",
|
| 63 |
-
)
|
| 64 |
-
encoded_tgt = self.tokenizer(
|
| 65 |
-
tgt_list,
|
| 66 |
-
max_length=self.max_length,
|
| 67 |
-
truncation=True,
|
| 68 |
-
padding=True,
|
| 69 |
-
return_tensors="pt",
|
| 70 |
-
)
|
| 71 |
-
src_tokens = encoded_src["input_ids"].to(self.device)
|
| 72 |
-
src_mask = encoded_src["attention_mask"].to(self.device)
|
| 73 |
-
|
| 74 |
-
tgt_tokens = encoded_tgt["input_ids"].to(self.device)
|
| 75 |
-
tgt_mask = encoded_tgt["attention_mask"]
|
| 76 |
-
tgt_len = tgt_mask.sum(dim=1).to(self.device)
|
| 77 |
-
|
| 78 |
-
output = self.model(
|
| 79 |
-
input_ids=src_tokens,
|
| 80 |
-
attention_mask=src_mask,
|
| 81 |
-
labels=tgt_tokens,
|
| 82 |
-
)
|
| 83 |
-
logits = output.logits.view(
|
| 84 |
-
-1,
|
| 85 |
-
self.model.config.vocab_size,
|
| 86 |
-
)
|
| 87 |
-
loss = self.loss_fct(self.lsm(logits), tgt_tokens.view(-1))
|
| 88 |
-
loss = loss.view(tgt_tokens.shape[0], -1)
|
| 89 |
-
loss = loss.sum(dim=1) / tgt_len
|
| 90 |
-
curr_score_list = [-x.item() for x in loss]
|
| 91 |
-
score_list += curr_score_list
|
| 92 |
-
|
| 93 |
-
except RuntimeError:
|
| 94 |
-
traceback.print_exc()
|
| 95 |
-
print(f"source: {src_list}")
|
| 96 |
-
print(f"target: {tgt_list}")
|
| 97 |
-
exit(0)
|
| 98 |
-
return score_list
|
| 99 |
-
|
| 100 |
-
def multi_ref_score(
|
| 101 |
-
self,
|
| 102 |
-
srcs,
|
| 103 |
-
tgts: List[List[str]],
|
| 104 |
-
agg="mean",
|
| 105 |
-
batch_size=4,
|
| 106 |
-
):
|
| 107 |
-
# Assert we have the same number of references
|
| 108 |
-
ref_nums = [len(x) for x in tgts]
|
| 109 |
-
if len(set(ref_nums)) > 1:
|
| 110 |
-
raise Exception(
|
| 111 |
-
"You have different number of references per test sample.",
|
| 112 |
-
)
|
| 113 |
-
|
| 114 |
-
ref_num = len(tgts[0])
|
| 115 |
-
score_matrix = []
|
| 116 |
-
for i in range(ref_num):
|
| 117 |
-
curr_tgts = [x[i] for x in tgts]
|
| 118 |
-
scores = self.score(srcs, curr_tgts, batch_size)
|
| 119 |
-
score_matrix.append(scores)
|
| 120 |
-
if agg == "mean":
|
| 121 |
-
score_list = np.mean(score_matrix, axis=0)
|
| 122 |
-
elif agg == "max":
|
| 123 |
-
score_list = np.max(score_matrix, axis=0)
|
| 124 |
-
else:
|
| 125 |
-
raise NotImplementedError
|
| 126 |
-
return list(score_list)
|
| 127 |
-
|
| 128 |
-
def test(self, batch_size=3):
|
| 129 |
-
"""Test"""
|
| 130 |
-
src_list = [
|
| 131 |
-
"This is a very good idea. Although simple, but very insightful.",
|
| 132 |
-
"Can I take a look?",
|
| 133 |
-
"Do not trust him, he is a liar.",
|
| 134 |
-
]
|
| 135 |
-
|
| 136 |
-
tgt_list = [
|
| 137 |
-
"That's stupid.",
|
| 138 |
-
"What's the problem?",
|
| 139 |
-
"He is trustworthy.",
|
| 140 |
-
]
|
| 141 |
-
|
| 142 |
-
print(self.score(src_list, tgt_list, batch_size))
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
def bart_score(text_1, text_2):
|
| 146 |
-
"""
|
| 147 |
-
Computes the BART score between two texts.
|
| 148 |
-
|
| 149 |
-
Parameters:
|
| 150 |
-
text_1 (str): The first text.
|
| 151 |
-
text_2 (str): The second text.
|
| 152 |
-
|
| 153 |
-
Returns:
|
| 154 |
-
float: The BART score.
|
| 155 |
-
"""
|
| 156 |
-
score = bart_scorer.score([text_1], [text_2])
|
| 157 |
-
return score
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
def check_bart_score(input_text, raw_text):
|
| 161 |
-
"""
|
| 162 |
-
Checks if the BART score between input_text and raw_text is above
|
| 163 |
-
a threshold.
|
| 164 |
-
|
| 165 |
-
Parameters:
|
| 166 |
-
input_text (str): The input text.
|
| 167 |
-
raw_text (str): The raw text to compare against.
|
| 168 |
-
|
| 169 |
-
Returns:
|
| 170 |
-
bool: True if the score is above the threshold, False otherwise.
|
| 171 |
-
"""
|
| 172 |
-
THRESHOLD = -2.459
|
| 173 |
-
normalized_text = normalize_text(raw_text)
|
| 174 |
-
score = bart_score(input_text, normalized_text)[0]
|
| 175 |
-
return score >= THRESHOLD
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
def bart_score_in_batch(text_1, text_2):
|
| 179 |
-
"""
|
| 180 |
-
Calculates the BART score for pairs of texts in batches.
|
| 181 |
-
|
| 182 |
-
Args:
|
| 183 |
-
text_1 (list of str): The first list of texts.
|
| 184 |
-
text_2 (list of str): The second list of texts.
|
| 185 |
-
|
| 186 |
-
Returns:
|
| 187 |
-
list: A list of BART scores for each pair of texts.
|
| 188 |
-
"""
|
| 189 |
-
return bart_scorer.score(text_1, text_2, batch_size=BATCH_SIZE)
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
def extract_feature_in_batch(text_1, text_2, feature_kind):
|
| 193 |
-
"""
|
| 194 |
-
Extracts features for pairs of texts using BART scores.
|
| 195 |
-
|
| 196 |
-
Args:
|
| 197 |
-
text_1 (list of str): The first list of texts.
|
| 198 |
-
text_2 (list of str): The second list of texts.
|
| 199 |
-
feature_kind (str): The type of feature to extract.
|
| 200 |
-
|
| 201 |
-
Returns:
|
| 202 |
-
list: A list of extracted features.
|
| 203 |
-
"""
|
| 204 |
-
features = bart_score_in_batch(text_1, text_2)
|
| 205 |
-
return features
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/texts/SimLLM/Refactor/config.py
DELETED
|
@@ -1,115 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import configparser
|
| 3 |
-
|
| 4 |
-
import google.generativeai as genai
|
| 5 |
-
import nltk
|
| 6 |
-
from datasets import load_metric
|
| 7 |
-
from langchain.chat_models import ChatOpenAI
|
| 8 |
-
from transformers import AutoTokenizer
|
| 9 |
-
|
| 10 |
-
from texts.bart_score import BARTScorer
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
# Constants
|
| 14 |
-
# TODO: move to .env
|
| 15 |
-
env = configparser.ConfigParser()
|
| 16 |
-
env.read(".env") # An example environment: .sample-env
|
| 17 |
-
|
| 18 |
-
# Get API key
|
| 19 |
-
OPENAI_API_KEY = env["API_KEY"]["OPENAI_API_KEY"]
|
| 20 |
-
GEMINI_API_KEY = env["API_KEY"]["GEMINI_API_KEY"]
|
| 21 |
-
TOGETHER_API_KEY = env["API_KEY"]["TOGETHER_API_KEY"]
|
| 22 |
-
|
| 23 |
-
# Environment setup
|
| 24 |
-
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
|
| 25 |
-
os.environ["GEMINI_API_KEY"] = GEMINI_API_KEY
|
| 26 |
-
os.environ["TOGETHER_API_KEY"] = TOGETHER_API_KEY
|
| 27 |
-
os.environ["CURL_CA_BUNDLE"] = ""
|
| 28 |
-
os.environ["REQUESTS_CA_BUNDLE"] = ""
|
| 29 |
-
|
| 30 |
-
# File Path
|
| 31 |
-
LOG_FILE = "data/99_log.txt"
|
| 32 |
-
OUTPUT_FILE = "data/result.txt"
|
| 33 |
-
METRIC_NAME = "roc_auc"
|
| 34 |
-
|
| 35 |
-
# Training and Model Parameters
|
| 36 |
-
TRAIN_RATIO = 0.8
|
| 37 |
-
VAL_RATIO = 0.1
|
| 38 |
-
NUMBER_OF_MAX_EPOCH_WITH_EARLY_STOPPING = 10
|
| 39 |
-
PATIENCE = 3
|
| 40 |
-
BATCH_SIZE = 64
|
| 41 |
-
OPTIMIZED_METRIC = "roc_auc"
|
| 42 |
-
SEED = 0
|
| 43 |
-
TEMPERATURE = 0.0
|
| 44 |
-
IS_OUTPUT_NORMALIZATION = False
|
| 45 |
-
RATIO = 0.9
|
| 46 |
-
HUMAN_LABEL = 0
|
| 47 |
-
MACHINE_LABEL = 1
|
| 48 |
-
BART = "bart"
|
| 49 |
-
|
| 50 |
-
# Model Options
|
| 51 |
-
MULTIMODEL = "multimodel"
|
| 52 |
-
SINGLE_FROM_MULTIMODEL = "single_from_multimodel"
|
| 53 |
-
|
| 54 |
-
# Downloading the NLTK "punkt" only if it's not already downloaded
|
| 55 |
-
nltk.download("punkt", quiet=True)
|
| 56 |
-
|
| 57 |
-
# API Models
|
| 58 |
-
# TODO: consider using an enum
|
| 59 |
-
API_ERROR = "API_ERROR"
|
| 60 |
-
IGNORE_BY_API_ERROR = "IGNORE_BY_API_ERROR"
|
| 61 |
-
CHATGPT = "ChatGPT"
|
| 62 |
-
GEMINI = "Gemini"
|
| 63 |
-
# LLAMA_2_70_CHAT_TEMP_0 = "LLaMa"
|
| 64 |
-
|
| 65 |
-
# Initialize BARTScorer
|
| 66 |
-
# TODO: consider loading model lazily
|
| 67 |
-
bart_scorer = BARTScorer(device="cuda:0", checkpoint="facebook/bart-large-cnn")
|
| 68 |
-
|
| 69 |
-
# Generative AI configuration
|
| 70 |
-
OPENAI_MODEL_NAME = "gpt-3.5-turbo-0125"
|
| 71 |
-
GEMINI_MODEL_NAME = "gemini-pro"
|
| 72 |
-
|
| 73 |
-
genai.configure(api_key=GEMINI_API_KEY, transport="rest")
|
| 74 |
-
GEMINI_MODEL = genai.GenerativeModel(
|
| 75 |
-
GEMINI_MODEL_NAME,
|
| 76 |
-
generation_config={"temperature": TEMPERATURE},
|
| 77 |
-
)
|
| 78 |
-
OPENAI_MODEL = ChatOpenAI(
|
| 79 |
-
temperature=TEMPERATURE,
|
| 80 |
-
model_name=OPENAI_MODEL_NAME,
|
| 81 |
-
)
|
| 82 |
-
|
| 83 |
-
# Model paths
|
| 84 |
-
MODEL_PATHS = {
|
| 85 |
-
"LLaMa": "meta-llama/Llama-2-70b-chat-hf",
|
| 86 |
-
"QWEN": "Qwen/Qwen1.5-72B-Chat",
|
| 87 |
-
"Yi": "NousResearch/Nous-Hermes-2-Yi-34B",
|
| 88 |
-
"Mixtral": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 89 |
-
"OLMo": "allenai/OLMo-7B-Instruct",
|
| 90 |
-
"Phi": "microsoft/phi-2",
|
| 91 |
-
"OpenChat": "openchat/openchat-3.5-1210",
|
| 92 |
-
"WizardLM": "WizardLM/WizardLM-13B-V1.2",
|
| 93 |
-
"Vicuna": "lmsys/vicuna-13b-v1.5",
|
| 94 |
-
}
|
| 95 |
-
|
| 96 |
-
TOGETHER_PATH = "https://api.together.xyz"
|
| 97 |
-
|
| 98 |
-
# Roberta model configurations
|
| 99 |
-
ROBERTA_BASE = "roberta-base"
|
| 100 |
-
ROBERTA_LARGE = "roberta-large"
|
| 101 |
-
ROBERTA_MODEL_PATHS = {
|
| 102 |
-
ROBERTA_BASE: "roberta-base",
|
| 103 |
-
ROBERTA_LARGE: "roberta-large",
|
| 104 |
-
}
|
| 105 |
-
LEARNING_RATES = {
|
| 106 |
-
ROBERTA_BASE: 2e-5,
|
| 107 |
-
ROBERTA_LARGE: 8e-6,
|
| 108 |
-
}
|
| 109 |
-
MODEL_NAME = ROBERTA_BASE
|
| 110 |
-
|
| 111 |
-
# Tokenizer initialization
|
| 112 |
-
tokenizer = AutoTokenizer.from_pretrained(ROBERTA_MODEL_PATHS[MODEL_NAME])
|
| 113 |
-
|
| 114 |
-
# Metric loading
|
| 115 |
-
metric = load_metric(METRIC_NAME)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/texts/SimLLM/Refactor/evaluation.py
DELETED
|
@@ -1,84 +0,0 @@
|
|
| 1 |
-
import nltk
|
| 2 |
-
import numpy as np
|
| 3 |
-
from config import metric
|
| 4 |
-
from utils import refine_candidate_text
|
| 5 |
-
|
| 6 |
-
from texts.bart_score import (
|
| 7 |
-
bart_score,
|
| 8 |
-
check_bart_score,
|
| 9 |
-
)
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
def compute_metrics(evaluation_predictions):
|
| 13 |
-
"""
|
| 14 |
-
Function to compute evaluation metrics for model predictions.
|
| 15 |
-
|
| 16 |
-
Parameters:
|
| 17 |
-
evaluation_predictions (tuple): A tuple containing two elements:
|
| 18 |
-
- predictions (array-like): The raw prediction scores from the model.
|
| 19 |
-
- labels (array-like): The true labels for the evaluation data.
|
| 20 |
-
|
| 21 |
-
Returns:
|
| 22 |
-
dict: A dictionary containing the computed evaluation metrics.
|
| 23 |
-
"""
|
| 24 |
-
# Unpack predictions and labels from the input tuple
|
| 25 |
-
raw_predictions, true_labels = evaluation_predictions
|
| 26 |
-
|
| 27 |
-
# Convert raw prediction scores to predicted class labels
|
| 28 |
-
predicted_labels = np.argmax(raw_predictions, axis=1)
|
| 29 |
-
|
| 30 |
-
# Compute and return the evaluation metrics
|
| 31 |
-
return metric.compute(
|
| 32 |
-
prediction_scores=predicted_labels,
|
| 33 |
-
references=true_labels,
|
| 34 |
-
average="macro",
|
| 35 |
-
)
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
def extract_by_best_similarity(input_text, raw_text):
|
| 39 |
-
"""
|
| 40 |
-
Extracts the best candidate string from the raw text based on the highest
|
| 41 |
-
similarity score compared to the input text. The similarity score is
|
| 42 |
-
calculated using the BART score.
|
| 43 |
-
|
| 44 |
-
Args:
|
| 45 |
-
input_text (str): The original text.
|
| 46 |
-
raw_text (str): The raw text containing multiple candidate strings.
|
| 47 |
-
|
| 48 |
-
Returns:
|
| 49 |
-
str: The best candidate string with the highest similarity score.
|
| 50 |
-
Returns the input text if no suitable candidate is found.
|
| 51 |
-
"""
|
| 52 |
-
|
| 53 |
-
# Refine the raw text
|
| 54 |
-
refined_raw_text = refine_candidate_text(input_text, raw_text)
|
| 55 |
-
|
| 56 |
-
# Tokenize the refined raw text into sentences
|
| 57 |
-
raw_candidates = nltk.sent_tokenize(refined_raw_text)
|
| 58 |
-
|
| 59 |
-
# Split sentences further by newlines to get individual candidates
|
| 60 |
-
candidate_list = []
|
| 61 |
-
for sentence in raw_candidates:
|
| 62 |
-
candidate_list.extend(sentence.split("\n"))
|
| 63 |
-
|
| 64 |
-
# Initialize variables to track the best similarity score
|
| 65 |
-
# and the best candidate
|
| 66 |
-
best_similarity = -9999
|
| 67 |
-
best_candidate = ""
|
| 68 |
-
|
| 69 |
-
# Iterate over each candidate to find the best one based on the BART score
|
| 70 |
-
for candidate in candidate_list:
|
| 71 |
-
refined_candidate = refine_candidate_text(input_text, candidate)
|
| 72 |
-
if check_bart_score(input_text, refined_candidate):
|
| 73 |
-
score = bart_score(input_text, refined_candidate)[0]
|
| 74 |
-
if score > best_similarity:
|
| 75 |
-
best_similarity = score
|
| 76 |
-
best_candidate = refined_candidate
|
| 77 |
-
|
| 78 |
-
# Print the best candidate found
|
| 79 |
-
print(f"best_candidate = {best_candidate}")
|
| 80 |
-
|
| 81 |
-
# Return the best candidate if found, otherwise return the input text
|
| 82 |
-
if best_candidate == "":
|
| 83 |
-
return input_text
|
| 84 |
-
return best_candidate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/texts/SimLLM/Refactor/main_text.py
DELETED
|
@@ -1,106 +0,0 @@
|
|
| 1 |
-
import argparse
|
| 2 |
-
|
| 3 |
-
from texts.config import CHATGPT
|
| 4 |
-
from texts.models import process_multi_models_with_validation
|
| 5 |
-
from texts.proofreading import generate_new_data_with_best_similarity
|
| 6 |
-
from texts.utils import generate_file_name
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
def main():
|
| 10 |
-
"""
|
| 11 |
-
Main function to handle argument parsing and execute the sequence of
|
| 12 |
-
operations including data generation and processing with multiple
|
| 13 |
-
models.
|
| 14 |
-
"""
|
| 15 |
-
parser = argparse.ArgumentParser(description="SimLLM.")
|
| 16 |
-
|
| 17 |
-
# Argument for specifying the list of large language models
|
| 18 |
-
parser.add_argument(
|
| 19 |
-
"--LLMs",
|
| 20 |
-
nargs="+",
|
| 21 |
-
default=[CHATGPT, "Yi", "OpenChat"],
|
| 22 |
-
help="List of large language models",
|
| 23 |
-
)
|
| 24 |
-
|
| 25 |
-
# Argument for specifying the list of training indexes
|
| 26 |
-
parser.add_argument(
|
| 27 |
-
"--train_indexes",
|
| 28 |
-
type=int,
|
| 29 |
-
default=[0, 1, 2],
|
| 30 |
-
nargs="+",
|
| 31 |
-
help="List of training indexes",
|
| 32 |
-
)
|
| 33 |
-
|
| 34 |
-
# Argument for specifying the list of testing indexes
|
| 35 |
-
parser.add_argument(
|
| 36 |
-
"--test_indexes",
|
| 37 |
-
type=int,
|
| 38 |
-
default=[0],
|
| 39 |
-
nargs="+",
|
| 40 |
-
help="List of testing indexes",
|
| 41 |
-
)
|
| 42 |
-
|
| 43 |
-
# Argument for specifying the number of samples
|
| 44 |
-
parser.add_argument(
|
| 45 |
-
"--num_samples",
|
| 46 |
-
type=int,
|
| 47 |
-
default=5000,
|
| 48 |
-
help="Number of samples",
|
| 49 |
-
)
|
| 50 |
-
|
| 51 |
-
# Parse the command-line arguments
|
| 52 |
-
args = parser.parse_args()
|
| 53 |
-
|
| 54 |
-
# Static dataset parameters
|
| 55 |
-
# dataset_name = "xsum"
|
| 56 |
-
# column_name = "document"
|
| 57 |
-
# num_samples = args.num_samples
|
| 58 |
-
output_file = "data/human.csv"
|
| 59 |
-
|
| 60 |
-
# Generate human data with shuffle
|
| 61 |
-
# generate_human_with_shuffle(
|
| 62 |
-
# dataset_name,
|
| 63 |
-
# column_name,
|
| 64 |
-
# num_samples,
|
| 65 |
-
# output_file,
|
| 66 |
-
# )
|
| 67 |
-
|
| 68 |
-
# Existing data parameters
|
| 69 |
-
existing_data_file = output_file
|
| 70 |
-
existing_kinds = []
|
| 71 |
-
|
| 72 |
-
# New kinds of models to generate data with
|
| 73 |
-
new_kinds = args.LLMs
|
| 74 |
-
|
| 75 |
-
# Generate new data with best similarity
|
| 76 |
-
generate_new_data_with_best_similarity(
|
| 77 |
-
existing_data_file,
|
| 78 |
-
existing_kinds,
|
| 79 |
-
new_kinds,
|
| 80 |
-
)
|
| 81 |
-
|
| 82 |
-
# Generate a filename for the multimodel CSV file
|
| 83 |
-
multimodel_csv_file = generate_file_name(
|
| 84 |
-
existing_data_file,
|
| 85 |
-
existing_kinds,
|
| 86 |
-
new_kinds,
|
| 87 |
-
)
|
| 88 |
-
|
| 89 |
-
# Number of samples to process (-1 means process all samples)
|
| 90 |
-
num_samples_to_process = -1
|
| 91 |
-
|
| 92 |
-
# Training and testing indexes from arguments
|
| 93 |
-
training_indexes = args.train_indexes
|
| 94 |
-
testing_indexes = args.test_indexes
|
| 95 |
-
|
| 96 |
-
# Process multiple models with validation
|
| 97 |
-
process_multi_models_with_validation(
|
| 98 |
-
multimodel_csv_file,
|
| 99 |
-
training_indexes,
|
| 100 |
-
testing_indexes,
|
| 101 |
-
num_samples_to_process,
|
| 102 |
-
)
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
if __name__ == "__main__":
|
| 106 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/texts/SimLLM/Refactor/models.py
DELETED
|
@@ -1,842 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import shutil
|
| 3 |
-
from copy import deepcopy
|
| 4 |
-
|
| 5 |
-
import numpy as np
|
| 6 |
-
from config import (
|
| 7 |
-
BART,
|
| 8 |
-
BATCH_SIZE,
|
| 9 |
-
HUMAN_LABEL,
|
| 10 |
-
LEARNING_RATES,
|
| 11 |
-
MACHINE_LABEL,
|
| 12 |
-
MODEL_NAME,
|
| 13 |
-
MULTIMODEL,
|
| 14 |
-
NUMBER_OF_MAX_EPOCH_WITH_EARLY_STOPPING,
|
| 15 |
-
OPTIMIZED_METRIC,
|
| 16 |
-
PATIENCE,
|
| 17 |
-
ROBERTA_MODEL_PATHS,
|
| 18 |
-
SINGLE_FROM_MULTIMODEL,
|
| 19 |
-
TRAIN_RATIO,
|
| 20 |
-
VAL_RATIO,
|
| 21 |
-
tokenizer,
|
| 22 |
-
)
|
| 23 |
-
from datasets import Dataset
|
| 24 |
-
from sklearn.base import accuracy_score
|
| 25 |
-
from sklearn.metrics import roc_auc_score
|
| 26 |
-
from sklearn.neural_network import MLPClassifier
|
| 27 |
-
from transformers import (
|
| 28 |
-
AutoModelForSequenceClassification,
|
| 29 |
-
DataCollatorWithPadding,
|
| 30 |
-
EarlyStoppingCallback,
|
| 31 |
-
Trainer,
|
| 32 |
-
TrainerCallback,
|
| 33 |
-
TrainingArguments,
|
| 34 |
-
)
|
| 35 |
-
|
| 36 |
-
from texts.bart_score import (
|
| 37 |
-
bart_score_in_batch,
|
| 38 |
-
extract_feature_in_batch,
|
| 39 |
-
)
|
| 40 |
-
from texts.config import OUTPUT_FILE
|
| 41 |
-
from texts.evaluation import compute_metrics
|
| 42 |
-
from texts.utils import (
|
| 43 |
-
check_error,
|
| 44 |
-
combine_text_with_BERT_format,
|
| 45 |
-
parse_multimodal_data,
|
| 46 |
-
write_to_file,
|
| 47 |
-
)
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
class TextDetector:
|
| 51 |
-
def __init__(self) -> None:
|
| 52 |
-
self.model = None
|
| 53 |
-
self.multimodel = None
|
| 54 |
-
self.train_data = None
|
| 55 |
-
self.val_data = None
|
| 56 |
-
self.test_data = None
|
| 57 |
-
self.train_features = None
|
| 58 |
-
self.val_features = None
|
| 59 |
-
self.test_features
|
| 60 |
-
|
| 61 |
-
def text_analysis(text: str) -> float:
|
| 62 |
-
score = 0.0
|
| 63 |
-
return score
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
class CustomCallback(TrainerCallback):
|
| 67 |
-
"""
|
| 68 |
-
Custom callback to evaluate the training dataset at the end of each epoch.
|
| 69 |
-
"""
|
| 70 |
-
|
| 71 |
-
def __init__(self, trainer) -> None:
|
| 72 |
-
super().__init__()
|
| 73 |
-
self._trainer = trainer
|
| 74 |
-
|
| 75 |
-
def on_epoch_end(self, args, state, control, **kwargs):
|
| 76 |
-
"""
|
| 77 |
-
At the end of each epoch, evaluate the training dataset.
|
| 78 |
-
"""
|
| 79 |
-
if control.should_evaluate:
|
| 80 |
-
control_copy = deepcopy(control)
|
| 81 |
-
self._trainer.evaluate(
|
| 82 |
-
eval_dataset=self._trainer.train_dataset,
|
| 83 |
-
metric_key_prefix="train",
|
| 84 |
-
)
|
| 85 |
-
return control_copy
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
def abstract_train(features, labels):
|
| 89 |
-
"""
|
| 90 |
-
Trains a model using the given features and labels.
|
| 91 |
-
|
| 92 |
-
Args:
|
| 93 |
-
features (list): The input features for training.
|
| 94 |
-
labels (list): The target labels for training.
|
| 95 |
-
|
| 96 |
-
Returns:
|
| 97 |
-
object: The trained model.
|
| 98 |
-
"""
|
| 99 |
-
model = MLPClassifier()
|
| 100 |
-
model.fit(features, labels)
|
| 101 |
-
return model
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
def evaluate_model(model, features, labels):
|
| 105 |
-
"""
|
| 106 |
-
Evaluates the model's performance using accuracy and ROC AUC scores.
|
| 107 |
-
|
| 108 |
-
Args:
|
| 109 |
-
model (object): The trained model to evaluate.
|
| 110 |
-
features (list): The input features for evaluation.
|
| 111 |
-
labels (list): The target labels for evaluation.
|
| 112 |
-
|
| 113 |
-
Returns:
|
| 114 |
-
None
|
| 115 |
-
"""
|
| 116 |
-
predictions = model.predict(features)
|
| 117 |
-
rounded_predictions = [round(value) for value in predictions]
|
| 118 |
-
|
| 119 |
-
accuracy = accuracy_score(labels, rounded_predictions)
|
| 120 |
-
write_to_file(OUTPUT_FILE, f"Accuracy: {accuracy * 100.0:.1f}%\n")
|
| 121 |
-
|
| 122 |
-
roc_auc = roc_auc_score(labels, rounded_predictions)
|
| 123 |
-
write_to_file(OUTPUT_FILE, f"ROC AUC: {roc_auc * 100.0:.1f}%\n")
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
def preprocess_function_multimodel(sample):
|
| 127 |
-
"""
|
| 128 |
-
Preprocesses a given sample for a multi-model setup by calculating
|
| 129 |
-
BART scores and formatting the text for BERT input.
|
| 130 |
-
|
| 131 |
-
Args:
|
| 132 |
-
sample (dict): A dictionary containing a key "text", which is a list of
|
| 133 |
-
lists of strings.
|
| 134 |
-
|
| 135 |
-
Returns:
|
| 136 |
-
dict: A dictionary containing tokenized and preprocessed text data.
|
| 137 |
-
"""
|
| 138 |
-
num_texts = len(sample["text"][0]) # Number of texts in each sub-sample
|
| 139 |
-
texts_grouped_by_index = [
|
| 140 |
-
[] for _ in range(num_texts)
|
| 141 |
-
] # Initialize empty lists for grouping texts by index
|
| 142 |
-
|
| 143 |
-
# Group texts by their index across sub-samples
|
| 144 |
-
for sub_sample in sample["text"]:
|
| 145 |
-
for i in range(num_texts):
|
| 146 |
-
texts_grouped_by_index[i].append(sub_sample[i])
|
| 147 |
-
|
| 148 |
-
# Calculate BART scores for each text pair (text[0] with text[i])
|
| 149 |
-
bart_scores = [
|
| 150 |
-
bart_score_in_batch(
|
| 151 |
-
texts_grouped_by_index[0],
|
| 152 |
-
texts_grouped_by_index[i],
|
| 153 |
-
)
|
| 154 |
-
for i in range(1, num_texts)
|
| 155 |
-
]
|
| 156 |
-
|
| 157 |
-
combined_texts = []
|
| 158 |
-
|
| 159 |
-
# Process each sub-sample for BERT input
|
| 160 |
-
for index, sub_sample in enumerate(sample["text"]):
|
| 161 |
-
text_array = [sub_sample[0]] # Start with the input text
|
| 162 |
-
score_generation_pairs = []
|
| 163 |
-
|
| 164 |
-
# Pair scores with their corresponding generations
|
| 165 |
-
for i in range(1, num_texts):
|
| 166 |
-
generation_text = sub_sample[i]
|
| 167 |
-
generation_score = bart_scores[i - 1][index]
|
| 168 |
-
score_generation_pairs.append((generation_score, generation_text))
|
| 169 |
-
|
| 170 |
-
# Sort pairs by score in descending order
|
| 171 |
-
sorted_pairs = sorted(score_generation_pairs, reverse=True)
|
| 172 |
-
|
| 173 |
-
# Append sorted texts to text_array
|
| 174 |
-
for _, sorted_text in sorted_pairs:
|
| 175 |
-
text_array.append(sorted_text)
|
| 176 |
-
|
| 177 |
-
# Combine texts into a single BERT-formatted string
|
| 178 |
-
combined_text = combine_text_with_BERT_format(text_array)
|
| 179 |
-
combined_texts.append(combined_text)
|
| 180 |
-
|
| 181 |
-
# Tokenize the combined texts for BERT
|
| 182 |
-
return tokenizer(combined_texts, add_special_tokens=False, truncation=True)
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
def preprocess_function_single_from_multimodel(sample):
|
| 186 |
-
"""
|
| 187 |
-
Extracts the first text from each sub-sample in a multi-model sample and
|
| 188 |
-
tokenizes it.
|
| 189 |
-
|
| 190 |
-
Args:
|
| 191 |
-
sample (dict): A dictionary containing a key "text", which is a list of
|
| 192 |
-
lists of strings.
|
| 193 |
-
|
| 194 |
-
Returns:
|
| 195 |
-
dict: A dictionary containing tokenized text data.
|
| 196 |
-
"""
|
| 197 |
-
combined_texts = []
|
| 198 |
-
|
| 199 |
-
# Iterate through each sub-sample
|
| 200 |
-
for sub_sample in sample["text"]:
|
| 201 |
-
input_text = sub_sample[
|
| 202 |
-
0
|
| 203 |
-
] # Extract the first text from the sub-sample
|
| 204 |
-
combined_texts.append(
|
| 205 |
-
input_text,
|
| 206 |
-
) # Append it to the list of combined texts
|
| 207 |
-
|
| 208 |
-
# Tokenize the combined texts
|
| 209 |
-
return tokenizer(combined_texts, truncation=True)
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
def train_only_by_transformer_with_test_evaluation_early_stop(
|
| 213 |
-
train_data,
|
| 214 |
-
test_data,
|
| 215 |
-
input_type,
|
| 216 |
-
num_classes=2,
|
| 217 |
-
):
|
| 218 |
-
"""
|
| 219 |
-
Trains a transformer model using the provided training and testing
|
| 220 |
-
datasets with early stopping.
|
| 221 |
-
|
| 222 |
-
Args:
|
| 223 |
-
train_data (Dataset): The training dataset.
|
| 224 |
-
test_data (Dataset): The testing dataset.
|
| 225 |
-
input_type (str): The type of input data, either MULTIMODEL or
|
| 226 |
-
SINGLE_FROM_MULTIMODEL.
|
| 227 |
-
num_classes (int, optional): The number of classes for classification.
|
| 228 |
-
Defaults to 2.
|
| 229 |
-
|
| 230 |
-
Returns:
|
| 231 |
-
Trainer: The trained model wrapped in a Trainer object.
|
| 232 |
-
"""
|
| 233 |
-
# Preprocess datasets based on the input type
|
| 234 |
-
if input_type == MULTIMODEL:
|
| 235 |
-
train_data = train_data.map(
|
| 236 |
-
preprocess_function_multimodel,
|
| 237 |
-
batched=True,
|
| 238 |
-
)
|
| 239 |
-
test_data = test_data.map(preprocess_function_multimodel, batched=True)
|
| 240 |
-
elif input_type == SINGLE_FROM_MULTIMODEL:
|
| 241 |
-
train_data = train_data.map(
|
| 242 |
-
preprocess_function_single_from_multimodel,
|
| 243 |
-
batched=True,
|
| 244 |
-
)
|
| 245 |
-
test_data = test_data.map(
|
| 246 |
-
preprocess_function_single_from_multimodel,
|
| 247 |
-
batched=True,
|
| 248 |
-
)
|
| 249 |
-
|
| 250 |
-
# Data collator to pad inputs
|
| 251 |
-
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
| 252 |
-
|
| 253 |
-
# Load appropriate model based on number of classes
|
| 254 |
-
if num_classes == 3:
|
| 255 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
| 256 |
-
"pretrained_model/roberta-base_num_labels_3",
|
| 257 |
-
num_labels=num_classes,
|
| 258 |
-
)
|
| 259 |
-
else:
|
| 260 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
| 261 |
-
ROBERTA_MODEL_PATHS[MODEL_NAME],
|
| 262 |
-
num_labels=num_classes,
|
| 263 |
-
)
|
| 264 |
-
|
| 265 |
-
learning_rate = LEARNING_RATES[MODEL_NAME]
|
| 266 |
-
output_folder = "training_with_callbacks"
|
| 267 |
-
|
| 268 |
-
# Remove the output folder if it already exists
|
| 269 |
-
if os.path.exists(output_folder):
|
| 270 |
-
shutil.rmtree(output_folder)
|
| 271 |
-
|
| 272 |
-
# Training arguments
|
| 273 |
-
training_args = TrainingArguments(
|
| 274 |
-
output_dir=output_folder,
|
| 275 |
-
evaluation_strategy="epoch",
|
| 276 |
-
logging_strategy="epoch",
|
| 277 |
-
save_strategy="epoch",
|
| 278 |
-
learning_rate=learning_rate,
|
| 279 |
-
per_device_train_batch_size=BATCH_SIZE,
|
| 280 |
-
per_device_eval_batch_size=BATCH_SIZE,
|
| 281 |
-
num_train_epochs=NUMBER_OF_MAX_EPOCH_WITH_EARLY_STOPPING,
|
| 282 |
-
weight_decay=0.01,
|
| 283 |
-
push_to_hub=False,
|
| 284 |
-
metric_for_best_model=OPTIMIZED_METRIC,
|
| 285 |
-
load_best_model_at_end=True,
|
| 286 |
-
)
|
| 287 |
-
|
| 288 |
-
# Create Trainer object
|
| 289 |
-
trainer = Trainer(
|
| 290 |
-
model=model,
|
| 291 |
-
args=training_args,
|
| 292 |
-
train_dataset=train_data,
|
| 293 |
-
eval_dataset=test_data,
|
| 294 |
-
tokenizer=tokenizer,
|
| 295 |
-
data_collator=data_collator,
|
| 296 |
-
compute_metrics=compute_metrics,
|
| 297 |
-
callbacks=[EarlyStoppingCallback(early_stopping_patience=PATIENCE)],
|
| 298 |
-
)
|
| 299 |
-
|
| 300 |
-
# Add custom callback
|
| 301 |
-
trainer.add_callback(CustomCallback(trainer))
|
| 302 |
-
|
| 303 |
-
# Start training
|
| 304 |
-
trainer.train()
|
| 305 |
-
|
| 306 |
-
return trainer
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
def create_pair_sample(data_item, training_indices):
|
| 310 |
-
"""
|
| 311 |
-
Creates pair samples for training by comparing human data with
|
| 312 |
-
machine-generated data.
|
| 313 |
-
|
| 314 |
-
Args:
|
| 315 |
-
data_item (dict): A dictionary containing 'human', 'single',
|
| 316 |
-
and 'pair' data.
|
| 317 |
-
training_indices (list): A list of indices used for training.
|
| 318 |
-
|
| 319 |
-
Returns:
|
| 320 |
-
list: A list of dictionaries, each containing a 'text' array
|
| 321 |
-
and a 'label'.
|
| 322 |
-
"""
|
| 323 |
-
# Initialize the result list
|
| 324 |
-
result_samples = []
|
| 325 |
-
|
| 326 |
-
# Check if there is any error in the data_item
|
| 327 |
-
if check_error(data_item):
|
| 328 |
-
return result_samples
|
| 329 |
-
|
| 330 |
-
# Create machine samples
|
| 331 |
-
for train_idx in training_indices:
|
| 332 |
-
if data_item["human"] != data_item["single"][train_idx]:
|
| 333 |
-
text_array = []
|
| 334 |
-
machine_text = data_item["single"][train_idx]
|
| 335 |
-
text_array.append(machine_text)
|
| 336 |
-
|
| 337 |
-
for sub_idx in training_indices:
|
| 338 |
-
text_array.append(data_item["pair"][train_idx][sub_idx])
|
| 339 |
-
|
| 340 |
-
sample = {
|
| 341 |
-
"text": text_array,
|
| 342 |
-
"label": MACHINE_LABEL,
|
| 343 |
-
}
|
| 344 |
-
result_samples.append(sample)
|
| 345 |
-
|
| 346 |
-
# Create human samples
|
| 347 |
-
text_array = [data_item["human"]]
|
| 348 |
-
|
| 349 |
-
for train_idx in training_indices:
|
| 350 |
-
text_array.append(data_item["single"][train_idx])
|
| 351 |
-
|
| 352 |
-
human_sample = {
|
| 353 |
-
"text": text_array,
|
| 354 |
-
"label": HUMAN_LABEL,
|
| 355 |
-
}
|
| 356 |
-
|
| 357 |
-
# Append human samples for each machine sample
|
| 358 |
-
num_machine_samples = len(result_samples)
|
| 359 |
-
for _ in range(num_machine_samples):
|
| 360 |
-
result_samples.append(human_sample)
|
| 361 |
-
|
| 362 |
-
return result_samples
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
def create_pair_test_sample(data_item, training_indices, testing_indices):
|
| 366 |
-
"""
|
| 367 |
-
Creates pair test samples by comparing human data with
|
| 368 |
-
machine-generated data.
|
| 369 |
-
|
| 370 |
-
Args:
|
| 371 |
-
data_item (dict): A dictionary containing 'human', 'single', and
|
| 372 |
-
'pair' data.
|
| 373 |
-
training_indices (list): A list of indices used for training.
|
| 374 |
-
testing_indices (list): A list of indices used for testing.
|
| 375 |
-
|
| 376 |
-
Returns:
|
| 377 |
-
list: A list of dictionaries, each containing a 'text' array and a
|
| 378 |
-
'label'.
|
| 379 |
-
"""
|
| 380 |
-
# Initialize the result list
|
| 381 |
-
result_samples = []
|
| 382 |
-
|
| 383 |
-
# Check if there is any error in the data_item
|
| 384 |
-
if check_error(data_item):
|
| 385 |
-
return result_samples
|
| 386 |
-
|
| 387 |
-
# Create machine samples based on testing indices
|
| 388 |
-
for test_idx in testing_indices:
|
| 389 |
-
if data_item["human"] != data_item["single"][test_idx]:
|
| 390 |
-
text_array = []
|
| 391 |
-
machine_text = data_item["single"][test_idx]
|
| 392 |
-
text_array.append(machine_text)
|
| 393 |
-
|
| 394 |
-
for train_idx in training_indices:
|
| 395 |
-
text_array.append(data_item["pair"][test_idx][train_idx])
|
| 396 |
-
|
| 397 |
-
sample = {
|
| 398 |
-
"text": text_array,
|
| 399 |
-
"label": MACHINE_LABEL,
|
| 400 |
-
}
|
| 401 |
-
result_samples.append(sample)
|
| 402 |
-
|
| 403 |
-
# Create human sample
|
| 404 |
-
text_array = [data_item["human"]]
|
| 405 |
-
|
| 406 |
-
for train_idx in training_indices:
|
| 407 |
-
text_array.append(data_item["single"][train_idx])
|
| 408 |
-
|
| 409 |
-
human_sample = {
|
| 410 |
-
"text": text_array,
|
| 411 |
-
"label": HUMAN_LABEL,
|
| 412 |
-
}
|
| 413 |
-
|
| 414 |
-
# Append the human sample for each machine sample
|
| 415 |
-
num_machine_samples = len(result_samples)
|
| 416 |
-
for _ in range(num_machine_samples):
|
| 417 |
-
result_samples.append(human_sample)
|
| 418 |
-
|
| 419 |
-
return result_samples
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
def create_train_val_sample(data, training_indices):
|
| 423 |
-
"""
|
| 424 |
-
Creates training and validation samples from the provided data.
|
| 425 |
-
|
| 426 |
-
Args:
|
| 427 |
-
data (list): A list of data items, each to be processed.
|
| 428 |
-
training_indices (list): A list of indices used for training.
|
| 429 |
-
|
| 430 |
-
Returns:
|
| 431 |
-
list: A list of training and validation samples created from the data.
|
| 432 |
-
"""
|
| 433 |
-
# Initialize the result list
|
| 434 |
-
result_samples = []
|
| 435 |
-
|
| 436 |
-
# Process each item in the data
|
| 437 |
-
for data_item in data:
|
| 438 |
-
# Create pair samples for the current item
|
| 439 |
-
sub_samples = create_pair_sample(data_item, training_indices)
|
| 440 |
-
|
| 441 |
-
# Extend the result list with the created sub-samples
|
| 442 |
-
result_samples.extend(sub_samples)
|
| 443 |
-
|
| 444 |
-
return result_samples
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
def create_test_sample(data, training_indices, testing_indices):
|
| 448 |
-
"""
|
| 449 |
-
Creates test samples from the provided data by comparing human data with
|
| 450 |
-
machine-generated data.
|
| 451 |
-
|
| 452 |
-
Args:
|
| 453 |
-
data (list): A list of data items, each to be processed.
|
| 454 |
-
training_indices (list): A list of indices used for training.
|
| 455 |
-
testing_indices (list): A list of indices used for testing.
|
| 456 |
-
|
| 457 |
-
Returns:
|
| 458 |
-
list: A list of test samples created from the data.
|
| 459 |
-
"""
|
| 460 |
-
# Initialize the result list
|
| 461 |
-
result_samples = []
|
| 462 |
-
|
| 463 |
-
# Process each item in the data
|
| 464 |
-
for data_item in data:
|
| 465 |
-
# Create pair test samples for the current item
|
| 466 |
-
sub_samples = create_pair_test_sample(
|
| 467 |
-
data_item,
|
| 468 |
-
training_indices,
|
| 469 |
-
testing_indices,
|
| 470 |
-
)
|
| 471 |
-
|
| 472 |
-
# Extend the result list with the created sub-samples
|
| 473 |
-
result_samples.extend(sub_samples)
|
| 474 |
-
|
| 475 |
-
return result_samples
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
def distribute_data(data, train_indices, test_indices, train_ratio, val_ratio):
|
| 479 |
-
"""
|
| 480 |
-
Distributes the data into training, validation, and test samples.
|
| 481 |
-
|
| 482 |
-
Args:
|
| 483 |
-
data (list): A list of data items to be split and processed.
|
| 484 |
-
train_indices (list): A list of indices used for training.
|
| 485 |
-
test_indices (list): A list of indices used for testing.
|
| 486 |
-
train_ratio (float): The ratio of data to be used for training.
|
| 487 |
-
val_ratio (float): The ratio of data to be used for validation.
|
| 488 |
-
|
| 489 |
-
Returns:
|
| 490 |
-
tuple: A tuple containing lists of training, validation,
|
| 491 |
-
and test samples.
|
| 492 |
-
"""
|
| 493 |
-
# Split the data into training, validation, and test sets
|
| 494 |
-
train_data, val_data, test_data = split_train_val_test(
|
| 495 |
-
data,
|
| 496 |
-
train_ratio,
|
| 497 |
-
val_ratio,
|
| 498 |
-
)
|
| 499 |
-
|
| 500 |
-
# Create training samples
|
| 501 |
-
train_samples = create_train_val_sample(train_data, train_indices)
|
| 502 |
-
write_to_file(OUTPUT_FILE, f"train samples = {len(train_samples)}\n")
|
| 503 |
-
|
| 504 |
-
# Create validation samples
|
| 505 |
-
val_samples = create_train_val_sample(val_data, train_indices)
|
| 506 |
-
write_to_file(OUTPUT_FILE, f"val samples = {len(val_samples)}\n")
|
| 507 |
-
|
| 508 |
-
# Create test samples
|
| 509 |
-
test_samples = create_test_sample(test_data, train_indices, test_indices)
|
| 510 |
-
write_to_file(OUTPUT_FILE, f"test samples = {len(test_samples)}\n")
|
| 511 |
-
|
| 512 |
-
return train_samples, val_samples, test_samples
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
def convert_to_huggingface_with_multimodel(samples):
|
| 516 |
-
"""
|
| 517 |
-
Converts a list of samples to the Hugging Face Dataset format.
|
| 518 |
-
|
| 519 |
-
Args:
|
| 520 |
-
samples (list): A list of samples to be converted.
|
| 521 |
-
|
| 522 |
-
Returns:
|
| 523 |
-
Dataset: A Hugging Face Dataset object created from the samples.
|
| 524 |
-
"""
|
| 525 |
-
return Dataset.from_list(samples)
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
def train_by_transformer_with_multimodel_and_early_stop(
|
| 529 |
-
train_samples,
|
| 530 |
-
val_samples,
|
| 531 |
-
input_type,
|
| 532 |
-
):
|
| 533 |
-
"""
|
| 534 |
-
Trains a transformer model with multimodal data and early stopping.
|
| 535 |
-
|
| 536 |
-
Args:
|
| 537 |
-
train_samples (list): A list of training samples.
|
| 538 |
-
val_samples (list): A list of validation samples.
|
| 539 |
-
input_type (str): The type of input data (e.g., multimodal).
|
| 540 |
-
|
| 541 |
-
Returns:
|
| 542 |
-
object: The trained model with early stopping.
|
| 543 |
-
"""
|
| 544 |
-
# Convert training and validation samples to Hugging Face Dataset format
|
| 545 |
-
train_data = convert_to_huggingface_with_multimodel(train_samples)
|
| 546 |
-
val_data = convert_to_huggingface_with_multimodel(val_samples)
|
| 547 |
-
|
| 548 |
-
# Train the model with early stopping and return the trained model
|
| 549 |
-
return train_only_by_transformer_with_test_evaluation_early_stop(
|
| 550 |
-
train_data,
|
| 551 |
-
val_data,
|
| 552 |
-
input_type,
|
| 553 |
-
)
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
def test_by_transformer_with_multimodel(detector, test_samples, input_type):
|
| 557 |
-
"""
|
| 558 |
-
Tests a trained transformer model with multimodal data.
|
| 559 |
-
|
| 560 |
-
Args:
|
| 561 |
-
detector (object): The trained model to be evaluated.
|
| 562 |
-
test_samples (list): A list of test samples.
|
| 563 |
-
input_type (str): The type of input data (e.g., multimodal).
|
| 564 |
-
|
| 565 |
-
Returns:
|
| 566 |
-
None
|
| 567 |
-
"""
|
| 568 |
-
# Convert test samples to Hugging Face Dataset format
|
| 569 |
-
test_data = convert_to_huggingface_with_multimodel(test_samples)
|
| 570 |
-
|
| 571 |
-
# Apply the appropriate preprocessing function based on the input type
|
| 572 |
-
if input_type == MULTIMODEL:
|
| 573 |
-
test_data = test_data.map(preprocess_function_multimodel, batched=True)
|
| 574 |
-
elif input_type == SINGLE_FROM_MULTIMODEL:
|
| 575 |
-
test_data = test_data.map(
|
| 576 |
-
preprocess_function_single_from_multimodel,
|
| 577 |
-
batched=True,
|
| 578 |
-
)
|
| 579 |
-
|
| 580 |
-
# Evaluate the model on the test data
|
| 581 |
-
result = detector.evaluate(eval_dataset=test_data)
|
| 582 |
-
|
| 583 |
-
# Extract and log the ROC AUC score
|
| 584 |
-
roc_auc = result["eval_roc_auc"]
|
| 585 |
-
write_to_file(OUTPUT_FILE, "roc_auc: %.1f%%" % (roc_auc * 100.0) + "\n")
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
def extract_by_feature_kind(samples, feature_type):
|
| 589 |
-
"""
|
| 590 |
-
Extracts features from the given samples based on the specified feature
|
| 591 |
-
type.
|
| 592 |
-
|
| 593 |
-
Args:
|
| 594 |
-
samples (list): A list of samples where each sample is a dictionary
|
| 595 |
-
with 'text' and 'label' keys.
|
| 596 |
-
feature_type (str): The type of feature to extract.
|
| 597 |
-
|
| 598 |
-
Returns:
|
| 599 |
-
tuple: A tuple containing the extracted features and corresponding
|
| 600 |
-
labels.
|
| 601 |
-
"""
|
| 602 |
-
text_1_list = []
|
| 603 |
-
text_2_list = []
|
| 604 |
-
labels = []
|
| 605 |
-
|
| 606 |
-
for sample in samples:
|
| 607 |
-
text_1_list.append(sample["text"][0])
|
| 608 |
-
text_2_list.append(sample["text"][1])
|
| 609 |
-
labels.append(sample["label"])
|
| 610 |
-
|
| 611 |
-
# Extract features in batch based on the feature type
|
| 612 |
-
features = extract_feature_in_batch(text_1_list, text_2_list, feature_type)
|
| 613 |
-
|
| 614 |
-
return features, labels
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
def train_by_feature_kind(train_samples, feature_type):
|
| 618 |
-
"""
|
| 619 |
-
Trains a model using features extracted from the training samples based on
|
| 620 |
-
the specified feature type.
|
| 621 |
-
|
| 622 |
-
Args:
|
| 623 |
-
train_samples (list): A list of training samples where each sample is
|
| 624 |
-
a dictionary with 'text' and 'label' keys.
|
| 625 |
-
feature_type (str): The type of feature to extract for training.
|
| 626 |
-
|
| 627 |
-
Returns:
|
| 628 |
-
object: The trained model.
|
| 629 |
-
"""
|
| 630 |
-
# Extract features and labels from the training samples
|
| 631 |
-
features, labels = extract_by_feature_kind(train_samples, feature_type)
|
| 632 |
-
|
| 633 |
-
# Convert features to a numpy array and reshape for training
|
| 634 |
-
features = np.array(features)
|
| 635 |
-
features = features.reshape(-1, 1)
|
| 636 |
-
|
| 637 |
-
# Train the model using the extracted features and labels
|
| 638 |
-
model = abstract_train(features, labels)
|
| 639 |
-
|
| 640 |
-
return model
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
def test_by_feature_kind(detector, samples, feature_type):
|
| 644 |
-
"""
|
| 645 |
-
Tests a detector using features extracted from the provided samples based
|
| 646 |
-
on the specified feature type.
|
| 647 |
-
|
| 648 |
-
Args:
|
| 649 |
-
detector (object): The detector model to be evaluated.
|
| 650 |
-
samples (list): A list of samples where each sample is a dictionary
|
| 651 |
-
with 'text' and 'label' keys.
|
| 652 |
-
feature_type (str): The type of feature to extract for testing.
|
| 653 |
-
|
| 654 |
-
Returns:
|
| 655 |
-
None
|
| 656 |
-
"""
|
| 657 |
-
# Extract features and labels from the samples
|
| 658 |
-
features, labels = extract_by_feature_kind(samples, feature_type)
|
| 659 |
-
|
| 660 |
-
# Convert features to a numpy array and reshape for evaluation
|
| 661 |
-
features = np.array(features)
|
| 662 |
-
features = features.reshape(-1, 1)
|
| 663 |
-
|
| 664 |
-
# Evaluate the detector model using the extracted features and labels
|
| 665 |
-
evaluate_model(detector, features, labels)
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
def general_process_multimodels_train_val_test(
|
| 669 |
-
train_samples,
|
| 670 |
-
val_samples,
|
| 671 |
-
test_samples,
|
| 672 |
-
):
|
| 673 |
-
"""
|
| 674 |
-
General process for training, validating, and testing models using
|
| 675 |
-
multi-model and feature kind approaches.
|
| 676 |
-
|
| 677 |
-
Args:
|
| 678 |
-
train_samples (list): Training samples.
|
| 679 |
-
val_samples (list): Validation samples.
|
| 680 |
-
test_samples (list): Test samples.
|
| 681 |
-
|
| 682 |
-
Returns:
|
| 683 |
-
None
|
| 684 |
-
"""
|
| 685 |
-
# Multi-model approach
|
| 686 |
-
input_kind = MULTIMODEL
|
| 687 |
-
write_to_file(OUTPUT_FILE, "\nInput kind = {input_kind} \n")
|
| 688 |
-
|
| 689 |
-
# Train detector using multi-model with early stopping
|
| 690 |
-
detector = train_by_transformer_with_multimodel_and_early_stop(
|
| 691 |
-
train_samples,
|
| 692 |
-
val_samples,
|
| 693 |
-
input_kind,
|
| 694 |
-
)
|
| 695 |
-
|
| 696 |
-
# Evaluate on train set
|
| 697 |
-
write_to_file(OUTPUT_FILE, "EVALUATE ON TRAIN SET \n")
|
| 698 |
-
test_by_transformer_with_multimodel(detector, train_samples, input_kind)
|
| 699 |
-
|
| 700 |
-
# Evaluate on validation set
|
| 701 |
-
write_to_file(OUTPUT_FILE, "EVALUATE ON VALIDATION SET \n")
|
| 702 |
-
test_by_transformer_with_multimodel(detector, val_samples, input_kind)
|
| 703 |
-
|
| 704 |
-
# Evaluate on test set
|
| 705 |
-
write_to_file(OUTPUT_FILE, "EVALUATE ON TEST SET \n")
|
| 706 |
-
test_by_transformer_with_multimodel(detector, test_samples, input_kind)
|
| 707 |
-
|
| 708 |
-
# Single from multi-model approach
|
| 709 |
-
input_kind = SINGLE_FROM_MULTIMODEL
|
| 710 |
-
write_to_file(OUTPUT_FILE, "\nInput kind = {input_kind} \n")
|
| 711 |
-
|
| 712 |
-
# Train detector using single from multi-model with early stopping
|
| 713 |
-
detector = train_by_transformer_with_multimodel_and_early_stop(
|
| 714 |
-
train_samples,
|
| 715 |
-
val_samples,
|
| 716 |
-
input_kind,
|
| 717 |
-
)
|
| 718 |
-
|
| 719 |
-
# Evaluate on train set
|
| 720 |
-
write_to_file(OUTPUT_FILE, "EVALUATE ON TRAIN SET \n")
|
| 721 |
-
test_by_transformer_with_multimodel(detector, train_samples, input_kind)
|
| 722 |
-
|
| 723 |
-
# Evaluate on validation set
|
| 724 |
-
write_to_file(OUTPUT_FILE, "EVALUATE ON VALIDATION SET \n")
|
| 725 |
-
test_by_transformer_with_multimodel(detector, val_samples, input_kind)
|
| 726 |
-
|
| 727 |
-
# Evaluate on test set
|
| 728 |
-
write_to_file(OUTPUT_FILE, "EVALUATE ON TEST SET \n")
|
| 729 |
-
test_by_transformer_with_multimodel(detector, test_samples, input_kind)
|
| 730 |
-
|
| 731 |
-
# Feature kind approach
|
| 732 |
-
sample_length = len(train_samples[0]["text"])
|
| 733 |
-
if (
|
| 734 |
-
sample_length == 2
|
| 735 |
-
): # Check if the sample length is 2, indicating BART feature kind
|
| 736 |
-
feature_kind = BART
|
| 737 |
-
write_to_file(OUTPUT_FILE, "\nFeature kind = {feature_kind} \n")
|
| 738 |
-
|
| 739 |
-
# Train detector using feature kind
|
| 740 |
-
detector = train_by_feature_kind(train_samples, feature_kind)
|
| 741 |
-
|
| 742 |
-
# Evaluate on train set
|
| 743 |
-
write_to_file(OUTPUT_FILE, "EVALUATE ON TRAIN SET \n")
|
| 744 |
-
test_by_feature_kind(detector, train_samples, feature_kind)
|
| 745 |
-
|
| 746 |
-
# Evaluate on validation set
|
| 747 |
-
write_to_file(OUTPUT_FILE, "EVALUATE ON VALIDATION SET \n")
|
| 748 |
-
test_by_feature_kind(detector, val_samples, feature_kind)
|
| 749 |
-
|
| 750 |
-
# Evaluate on test set
|
| 751 |
-
write_to_file(OUTPUT_FILE, "EVALUATE ON TEST SET \n")
|
| 752 |
-
test_by_feature_kind(detector, test_samples, feature_kind)
|
| 753 |
-
|
| 754 |
-
|
| 755 |
-
def process_multi_models_with_validation(
|
| 756 |
-
multimodel_csv_file,
|
| 757 |
-
train_indices,
|
| 758 |
-
test_indices,
|
| 759 |
-
num_samples,
|
| 760 |
-
):
|
| 761 |
-
"""
|
| 762 |
-
Processes multi-model data with validation, training, and testing.
|
| 763 |
-
|
| 764 |
-
Args:
|
| 765 |
-
multimodel_csv_file (str): Path to the CSV file containing
|
| 766 |
-
multi-model data.
|
| 767 |
-
train_indices (list): Indices for the training data.
|
| 768 |
-
test_indices (list): Indices for the testing data.
|
| 769 |
-
num_samples (int): Number of samples to process.
|
| 770 |
-
|
| 771 |
-
Returns:
|
| 772 |
-
None
|
| 773 |
-
"""
|
| 774 |
-
# Log the details of the process
|
| 775 |
-
write_to_file(OUTPUT_FILE, f"PROCESSING FILE={multimodel_csv_file} \n")
|
| 776 |
-
write_to_file(OUTPUT_FILE, f"EXPERIMENT WITH {MODEL_NAME} model \n")
|
| 777 |
-
write_to_file(
|
| 778 |
-
OUTPUT_FILE,
|
| 779 |
-
f"NUMBER OF MAX EPOCHS WITH EARLY STOPPING =\
|
| 780 |
-
{NUMBER_OF_MAX_EPOCH_WITH_EARLY_STOPPING} \n",
|
| 781 |
-
)
|
| 782 |
-
write_to_file(OUTPUT_FILE, f"PATIENCE = {PATIENCE} \n")
|
| 783 |
-
write_to_file(OUTPUT_FILE, f"OPTIMIZED METRIC = {OPTIMIZED_METRIC} \n")
|
| 784 |
-
write_to_file(OUTPUT_FILE, f"BATCH SIZE = {BATCH_SIZE} \n")
|
| 785 |
-
write_to_file(OUTPUT_FILE, f"Number of samples = {num_samples} \n")
|
| 786 |
-
|
| 787 |
-
# Read multi-model data from the CSV file
|
| 788 |
-
data = parse_multimodal_data(multimodel_csv_file)
|
| 789 |
-
|
| 790 |
-
# Limit data to the specified number of samples
|
| 791 |
-
data = data[:num_samples]
|
| 792 |
-
|
| 793 |
-
# Distribute data into training, validation, and testing sets
|
| 794 |
-
train_samples, val_samples, test_samples = distribute_data(
|
| 795 |
-
data,
|
| 796 |
-
train_indices,
|
| 797 |
-
test_indices,
|
| 798 |
-
TRAIN_RATIO,
|
| 799 |
-
VAL_RATIO,
|
| 800 |
-
)
|
| 801 |
-
|
| 802 |
-
# Log the training and testing indices
|
| 803 |
-
write_to_file(
|
| 804 |
-
OUTPUT_FILE,
|
| 805 |
-
f"Multimodel training with train indices {train_indices},\
|
| 806 |
-
test with test indices {test_indices} \n",
|
| 807 |
-
)
|
| 808 |
-
|
| 809 |
-
# Process the multi-models for training, validation, and testing
|
| 810 |
-
general_process_multimodels_train_val_test(
|
| 811 |
-
train_samples,
|
| 812 |
-
val_samples,
|
| 813 |
-
test_samples,
|
| 814 |
-
)
|
| 815 |
-
|
| 816 |
-
|
| 817 |
-
def split_train_val_test(data, train_ratio, val_ratio):
|
| 818 |
-
"""
|
| 819 |
-
Splits the dataset into training, validation, and test sets based on
|
| 820 |
-
specified ratios.
|
| 821 |
-
|
| 822 |
-
Args:
|
| 823 |
-
data (list): The dataset to be split.
|
| 824 |
-
train_ratio (float): The ratio of the dataset to be used for training.
|
| 825 |
-
val_ratio (float): The ratio of the dataset to be used for validation.
|
| 826 |
-
|
| 827 |
-
Returns:
|
| 828 |
-
tuple: A tuple containing three lists
|
| 829 |
-
(train_data, val_data, test_data).
|
| 830 |
-
"""
|
| 831 |
-
# Calculate the number of samples for the training set
|
| 832 |
-
num_train_samples = int(len(data) * train_ratio)
|
| 833 |
-
|
| 834 |
-
# Calculate the number of samples for the validation set
|
| 835 |
-
num_val_samples = int(len(data) * val_ratio)
|
| 836 |
-
|
| 837 |
-
# Split the data into training, validation, and test sets
|
| 838 |
-
train_data = data[:num_train_samples]
|
| 839 |
-
val_data = data[num_train_samples : (num_train_samples + num_val_samples)]
|
| 840 |
-
test_data = data[(num_train_samples + num_val_samples) :]
|
| 841 |
-
|
| 842 |
-
return train_data, val_data, test_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/texts/SimLLM/Refactor/proofreading.py
DELETED
|
@@ -1,354 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
|
| 3 |
-
from config import (
|
| 4 |
-
CHATGPT,
|
| 5 |
-
GEMINI,
|
| 6 |
-
GEMINI_MODEL,
|
| 7 |
-
IS_OUTPUT_NORMALIZATION,
|
| 8 |
-
MODEL_PATHS,
|
| 9 |
-
OPENAI_MODEL,
|
| 10 |
-
TEMPERATURE,
|
| 11 |
-
TOGETHER_API_KEY,
|
| 12 |
-
TOGETHER_PATH,
|
| 13 |
-
)
|
| 14 |
-
from evaluation import extract_by_best_similarity
|
| 15 |
-
from openai import OpenAI
|
| 16 |
-
from utils import (
|
| 17 |
-
generate_column_names,
|
| 18 |
-
generate_file_name,
|
| 19 |
-
get_column,
|
| 20 |
-
normalize_text,
|
| 21 |
-
print_and_log,
|
| 22 |
-
read_csv_data,
|
| 23 |
-
write_new_data,
|
| 24 |
-
write_to_csv,
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
def abstract_proofread(model_path, temperature, base_url, api_key, prompt):
|
| 29 |
-
"""
|
| 30 |
-
Function to proofread an abstract using an AI language model.
|
| 31 |
-
|
| 32 |
-
Parameters:
|
| 33 |
-
model_path (str): The path or identifier of the AI model to use.
|
| 34 |
-
temperature (float): Sampling temperature for the model's output.
|
| 35 |
-
base_url (str): The base URL for the API endpoint.
|
| 36 |
-
api_key (str): The API key for authentication.
|
| 37 |
-
prompt (str): The text prompt to provide to the AI for proofreading.
|
| 38 |
-
|
| 39 |
-
Returns:
|
| 40 |
-
str: The proofread abstract generated by the AI model.
|
| 41 |
-
"""
|
| 42 |
-
# Initialize the AI client with the provided API key and base URL
|
| 43 |
-
ai_client = OpenAI(api_key=api_key, base_url=base_url)
|
| 44 |
-
|
| 45 |
-
# Create a chat completion request with the system message and user prompt
|
| 46 |
-
chat_completion = ai_client.chat.completions.create(
|
| 47 |
-
messages=[
|
| 48 |
-
{
|
| 49 |
-
"role": "system",
|
| 50 |
-
"content": "You are an AI assistant",
|
| 51 |
-
},
|
| 52 |
-
{
|
| 53 |
-
"role": "user",
|
| 54 |
-
"content": prompt,
|
| 55 |
-
},
|
| 56 |
-
],
|
| 57 |
-
model=model_path,
|
| 58 |
-
max_tokens=1024,
|
| 59 |
-
temperature=temperature,
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
# Return the content of the first choice's message
|
| 63 |
-
return chat_completion.choices[0].message.content
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
def proofread_by_model_name(model_name, input_text, normalize_output):
|
| 67 |
-
"""
|
| 68 |
-
Proofreads the given input text using the specified model.
|
| 69 |
-
|
| 70 |
-
Args:
|
| 71 |
-
model_name (str): The name of the model to use for proofreading.
|
| 72 |
-
input_text (str): The text to be proofread.
|
| 73 |
-
normalize_output (bool): Whether to normalize the output or not.
|
| 74 |
-
|
| 75 |
-
Returns:
|
| 76 |
-
str: The proofread text.
|
| 77 |
-
"""
|
| 78 |
-
# Constants for API access
|
| 79 |
-
base_url = TOGETHER_PATH
|
| 80 |
-
api_key = TOGETHER_API_KEY
|
| 81 |
-
temperature = TEMPERATURE
|
| 82 |
-
|
| 83 |
-
# Retrieve the model path from the dictionary
|
| 84 |
-
if model_name in MODEL_PATHS:
|
| 85 |
-
model_path = MODEL_PATHS[model_name]
|
| 86 |
-
else:
|
| 87 |
-
raise ValueError("Model name not found in the dictionary.")
|
| 88 |
-
|
| 89 |
-
# Formulate the prompt for the model
|
| 90 |
-
prompt = f"Proofreading for the text: ```{input_text}```"
|
| 91 |
-
|
| 92 |
-
# Apply output normalization if required
|
| 93 |
-
if normalize_output:
|
| 94 |
-
prompt = output_normalization(prompt)
|
| 95 |
-
|
| 96 |
-
# Debugging: Print the prompt
|
| 97 |
-
print(f"Prompt: {prompt}")
|
| 98 |
-
|
| 99 |
-
# Call the abstract proofreading function with the prepared parameters
|
| 100 |
-
return abstract_proofread(
|
| 101 |
-
model_path,
|
| 102 |
-
temperature,
|
| 103 |
-
base_url,
|
| 104 |
-
api_key,
|
| 105 |
-
prompt,
|
| 106 |
-
)
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
def gemini_proofread(input_text, normalize_output):
|
| 110 |
-
"""
|
| 111 |
-
Proofreads the given text using the GEMINI_MODEL.
|
| 112 |
-
|
| 113 |
-
Parameters:
|
| 114 |
-
input_text (str): The text to be proofread.
|
| 115 |
-
normalize_output (bool): Flag indicating whether to normalize the output.
|
| 116 |
-
|
| 117 |
-
Returns:
|
| 118 |
-
str: The proofread text.
|
| 119 |
-
"""
|
| 120 |
-
prompt = f"Proofreading for the text: ```{input_text}```"
|
| 121 |
-
if normalize_output:
|
| 122 |
-
prompt = output_normalization(prompt)
|
| 123 |
-
response = GEMINI_MODEL.generate_content(prompt)
|
| 124 |
-
return response.text
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
def chatGPT_proofread(input_text, normalize_output):
|
| 128 |
-
"""
|
| 129 |
-
Proofreads the given text using the chat_model.
|
| 130 |
-
|
| 131 |
-
Parameters:
|
| 132 |
-
input_text (str): The text to be proofread.
|
| 133 |
-
normalize_output (bool): Flag indicating whether to normalize the output.
|
| 134 |
-
|
| 135 |
-
Returns:
|
| 136 |
-
str: The proofread text.
|
| 137 |
-
"""
|
| 138 |
-
prompt = f"Proofreading for the text: ```{input_text}```"
|
| 139 |
-
if normalize_output:
|
| 140 |
-
prompt = output_normalization(prompt)
|
| 141 |
-
|
| 142 |
-
print(f"Starting API call with prompt: {prompt}")
|
| 143 |
-
result = OPENAI_MODEL.predict(prompt)
|
| 144 |
-
print(f"Ending API call with prompt: {prompt}")
|
| 145 |
-
|
| 146 |
-
return result
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
def output_normalization(prompt):
|
| 150 |
-
"""
|
| 151 |
-
Normalizes the output by appending a specific instruction to the prompt.
|
| 152 |
-
|
| 153 |
-
Parameters:
|
| 154 |
-
prompt (str): The initial prompt.
|
| 155 |
-
|
| 156 |
-
Returns:
|
| 157 |
-
str: The modified prompt.
|
| 158 |
-
"""
|
| 159 |
-
return (
|
| 160 |
-
prompt
|
| 161 |
-
+ " Please only output the proofread text without any explanation."
|
| 162 |
-
)
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
def proofread_with_best_similarity(input_text, model_kind):
|
| 166 |
-
"""
|
| 167 |
-
Proofreads the input text using the specified model and extracts the
|
| 168 |
-
best-corrected text based on similarity.
|
| 169 |
-
|
| 170 |
-
Args:
|
| 171 |
-
input_text (str): The original text to be proofread.
|
| 172 |
-
model_kind (str): The kind of model to use for proofreading
|
| 173 |
-
(e.g., CHATGPT, GEMINI).
|
| 174 |
-
|
| 175 |
-
Returns:
|
| 176 |
-
tuple: A tuple containing the raw proofread text and the
|
| 177 |
-
best-corrected text.
|
| 178 |
-
"""
|
| 179 |
-
|
| 180 |
-
# Normalize the input text
|
| 181 |
-
normalized_input_text = normalize_text(input_text)
|
| 182 |
-
print_and_log(f"INPUT = {normalized_input_text}")
|
| 183 |
-
|
| 184 |
-
result_text = ""
|
| 185 |
-
raw_text = ""
|
| 186 |
-
|
| 187 |
-
for i in range(
|
| 188 |
-
1,
|
| 189 |
-
): # Loop is redundant as it runs only once;
|
| 190 |
-
# consider removing if unnecessary
|
| 191 |
-
# Select the proofreading model based on model_kind
|
| 192 |
-
if model_kind == CHATGPT:
|
| 193 |
-
raw_text = chatGPT_proofread(
|
| 194 |
-
normalized_input_text,
|
| 195 |
-
normalize_output=IS_OUTPUT_NORMALIZATION,
|
| 196 |
-
)
|
| 197 |
-
elif model_kind == GEMINI:
|
| 198 |
-
raw_text = gemini_proofread(
|
| 199 |
-
normalized_input_text,
|
| 200 |
-
normalize_output=IS_OUTPUT_NORMALIZATION,
|
| 201 |
-
)
|
| 202 |
-
else:
|
| 203 |
-
raw_text = proofread_by_model_name(
|
| 204 |
-
model_kind,
|
| 205 |
-
normalized_input_text,
|
| 206 |
-
normalize_output=IS_OUTPUT_NORMALIZATION,
|
| 207 |
-
)
|
| 208 |
-
|
| 209 |
-
# Extract the best candidate text based on similarity
|
| 210 |
-
result_text = extract_by_best_similarity(
|
| 211 |
-
normalized_input_text,
|
| 212 |
-
raw_text,
|
| 213 |
-
)
|
| 214 |
-
|
| 215 |
-
# Log the raw and result texts
|
| 216 |
-
print_and_log(f"RAW_{i} = {raw_text}")
|
| 217 |
-
print
|
| 218 |
-
# Normalize the result text
|
| 219 |
-
result_text = normalize_text(result_text)
|
| 220 |
-
|
| 221 |
-
# If a valid result is obtained, return it
|
| 222 |
-
if result_text != "":
|
| 223 |
-
return raw_text, result_text
|
| 224 |
-
|
| 225 |
-
# Return the raw and result texts
|
| 226 |
-
return raw_text, result_text
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
def generate_new_data_with_best_similarity(
|
| 230 |
-
existing_data_file,
|
| 231 |
-
existing_kinds,
|
| 232 |
-
new_kinds,
|
| 233 |
-
):
|
| 234 |
-
"""
|
| 235 |
-
Generates new data with the best similarity based on existing and new
|
| 236 |
-
kinds, and writes the results to a CSV file.
|
| 237 |
-
|
| 238 |
-
Args:
|
| 239 |
-
existing_data_file (str): The path to the existing data file.
|
| 240 |
-
existing_kinds (list): A list of existing kinds.
|
| 241 |
-
new_kinds (list): A list of new kinds.
|
| 242 |
-
|
| 243 |
-
Returns:
|
| 244 |
-
None
|
| 245 |
-
"""
|
| 246 |
-
|
| 247 |
-
# Combine existing and new kinds into a single list
|
| 248 |
-
all_kinds = existing_kinds + new_kinds
|
| 249 |
-
|
| 250 |
-
# Generate column names for the CSV file
|
| 251 |
-
column_names = generate_column_names(all_kinds)
|
| 252 |
-
|
| 253 |
-
# Generate column names for existing kinds
|
| 254 |
-
existing_column_names = generate_column_names(existing_kinds)
|
| 255 |
-
|
| 256 |
-
# Generate the output file name
|
| 257 |
-
output_file = generate_file_name(
|
| 258 |
-
existing_data_file,
|
| 259 |
-
existing_kinds,
|
| 260 |
-
new_kinds,
|
| 261 |
-
)
|
| 262 |
-
|
| 263 |
-
# Create the output file with column names if it doesn't exist
|
| 264 |
-
if not os.path.exists(output_file):
|
| 265 |
-
write_to_csv(output_file, column_names)
|
| 266 |
-
|
| 267 |
-
# Read existing data from the file
|
| 268 |
-
existing_data = {
|
| 269 |
-
kind: get_column(existing_data_file, kind)
|
| 270 |
-
for kind in existing_column_names
|
| 271 |
-
}
|
| 272 |
-
|
| 273 |
-
# Read input data from the output file
|
| 274 |
-
input_data = read_csv_data(output_file)
|
| 275 |
-
start_index = len(input_data)
|
| 276 |
-
print(f"start_index = {start_index}")
|
| 277 |
-
|
| 278 |
-
num_rows = len(existing_data["human"])
|
| 279 |
-
global_generate_set = []
|
| 280 |
-
global_reuse = []
|
| 281 |
-
|
| 282 |
-
for index in range(start_index, num_rows):
|
| 283 |
-
# Initialize generation and reuse sets
|
| 284 |
-
generate_set = []
|
| 285 |
-
reuse_set = []
|
| 286 |
-
|
| 287 |
-
# Prepare the current generation dictionary
|
| 288 |
-
current_generation = {
|
| 289 |
-
kind: existing_data[kind][index] for kind in existing_column_names
|
| 290 |
-
}
|
| 291 |
-
print(f"current_generation before generation = {current_generation}")
|
| 292 |
-
|
| 293 |
-
human_text = current_generation["human"]
|
| 294 |
-
|
| 295 |
-
# Generate new kinds based on human text
|
| 296 |
-
for kind in new_kinds:
|
| 297 |
-
_, generated_text = proofread_with_best_similarity(
|
| 298 |
-
human_text,
|
| 299 |
-
kind,
|
| 300 |
-
)
|
| 301 |
-
current_generation[kind] = generated_text
|
| 302 |
-
generate_set.append(kind)
|
| 303 |
-
|
| 304 |
-
print(f"current_generation after generate one = {current_generation}")
|
| 305 |
-
|
| 306 |
-
# Generate combinations of kinds
|
| 307 |
-
for first_kind in all_kinds:
|
| 308 |
-
for second_kind in all_kinds:
|
| 309 |
-
combination_name = f"{first_kind}_{second_kind}"
|
| 310 |
-
|
| 311 |
-
if combination_name not in current_generation:
|
| 312 |
-
if (
|
| 313 |
-
first_kind in current_generation
|
| 314 |
-
and current_generation[first_kind] == human_text
|
| 315 |
-
):
|
| 316 |
-
generated_text = current_generation[second_kind]
|
| 317 |
-
reuse_set.append(
|
| 318 |
-
f"{combination_name} from {second_kind}",
|
| 319 |
-
)
|
| 320 |
-
else:
|
| 321 |
-
is_need_generation = True
|
| 322 |
-
for first_kind_2 in all_kinds:
|
| 323 |
-
if (
|
| 324 |
-
first_kind != first_kind_2
|
| 325 |
-
and current_generation[first_kind]
|
| 326 |
-
== current_generation[first_kind_2]
|
| 327 |
-
):
|
| 328 |
-
combination_name_2 = (
|
| 329 |
-
f"{first_kind_2}_{second_kind}"
|
| 330 |
-
)
|
| 331 |
-
if combination_name_2 in current_generation:
|
| 332 |
-
generated_text = current_generation[
|
| 333 |
-
combination_name_2
|
| 334 |
-
]
|
| 335 |
-
reuse_set.append(
|
| 336 |
-
f"{combination_name} from {combination_name_2}", # noqa: E501
|
| 337 |
-
)
|
| 338 |
-
is_need_generation = False
|
| 339 |
-
break
|
| 340 |
-
if is_need_generation:
|
| 341 |
-
_, generated_text = proofread_with_best_similarity(
|
| 342 |
-
current_generation[first_kind],
|
| 343 |
-
second_kind,
|
| 344 |
-
)
|
| 345 |
-
generate_set.append(f"{first_kind}_{second_kind}")
|
| 346 |
-
|
| 347 |
-
current_generation[combination_name] = generated_text
|
| 348 |
-
|
| 349 |
-
# Write the current generation to the output file
|
| 350 |
-
write_new_data(output_file, current_generation, column_names)
|
| 351 |
-
|
| 352 |
-
# Update global sets
|
| 353 |
-
global_generate_set.append(generate_set)
|
| 354 |
-
global_reuse
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/texts/SimLLM/Refactor/readme.md
DELETED
|
@@ -1,67 +0,0 @@
|
|
| 1 |
-
# [Text] SimLLM: Detecting Sentences Generated by Large Language Models Using Similarity between the Generation and its Re-Generation
|
| 2 |
-
|
| 3 |
-
## **Getting Started**
|
| 4 |
-
1. **Clone the repository:**
|
| 5 |
-
```bash
|
| 6 |
-
git clone https://github.com/Tokyo-Techies/prj-nict-ai-content-detection
|
| 7 |
-
```
|
| 8 |
-
|
| 9 |
-
2. **Set up the environment:**
|
| 10 |
-
Using virtual environment:
|
| 11 |
-
```bash
|
| 12 |
-
python -m venv .venv
|
| 13 |
-
source .venv/bin/activate
|
| 14 |
-
```
|
| 15 |
-
|
| 16 |
-
3. **Install dependencies:**
|
| 17 |
-
```bash
|
| 18 |
-
pip install -r requirements.txt
|
| 19 |
-
```
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
4. **API Keys** (optional)
|
| 23 |
-
- Obtain API keys for the corresponding models and insert them into the `SimLLM.py` file:
|
| 24 |
-
- ChatGPT: [OpenAI API](https://openai.com/index/openai-api/)
|
| 25 |
-
- Gemini: [Google Gemini API](https://ai.google.dev/gemini-api/docs/api-key)
|
| 26 |
-
- Other LLMs: [Together API](https://api.together.ai/)
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
5. **Run the project:**
|
| 30 |
-
```bash
|
| 31 |
-
main_text.py
|
| 32 |
-
```
|
| 33 |
-
|
| 34 |
-
### Parameters
|
| 35 |
-
|
| 36 |
-
- `LLMs`: List of large language models to use. Available models include 'ChatGPT', 'Yi', 'OpenChat', 'Gemini', 'LLaMa', 'Phi', 'Mixtral', 'QWen', 'OLMO', 'WizardLM', and 'Vicuna'. Default is `['ChatGPT', 'Yi', 'OpenChat']`.
|
| 37 |
-
- `train_indexes`: List of LLM indexes for training. Default is `[0, 1, 2]`.
|
| 38 |
-
- `test_indexes`: List of LLM indexes for testing. Default is `[0]`.
|
| 39 |
-
- `num_samples`: Number of samples. Default is 5000.
|
| 40 |
-
|
| 41 |
-
### Examples
|
| 42 |
-
|
| 43 |
-
- Running with default parameters:
|
| 44 |
-
`python SimLLM.py`
|
| 45 |
-
|
| 46 |
-
- Running with customized parameters:
|
| 47 |
-
`python SimLLM.py --LLMs ChatGPT --train_indexes 0 --test_indexes 0`
|
| 48 |
-
|
| 49 |
-
## Dataset
|
| 50 |
-
|
| 51 |
-
The `dataset.csv` file contains both human and generated texts from 12 large language models, including:
|
| 52 |
-
ChatGPT, GPT-4o, Yi, OpenChat, Gemini, LLaMa, Phi, Mixtral, QWen, OLMO, WizardLM, and Vicuna.
|
| 53 |
-
|
| 54 |
-
## Citation
|
| 55 |
-
|
| 56 |
-
```bibtex
|
| 57 |
-
@inproceedings{nguyen2024SimLLM,
|
| 58 |
-
title={SimLLM: Detecting Sentences Generated by Large Language Models Using Similarity between the Generation and its Re-generation},
|
| 59 |
-
author={Nguyen-Son, Hoang-Quoc and Dao, Minh-Son and Zettsu, Koji},
|
| 60 |
-
booktitle={The Conference on Empirical Methods in Natural Language Processing},
|
| 61 |
-
year={2024}
|
| 62 |
-
}
|
| 63 |
-
```
|
| 64 |
-
|
| 65 |
-
## Acknowledgements
|
| 66 |
-
|
| 67 |
-
- BARTScore: [BARTScore GitHub Repository](https://github.com/neulab/BARTScore)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/texts/SimLLM/Refactor/utils.py
DELETED
|
@@ -1,527 +0,0 @@
|
|
| 1 |
-
import csv
|
| 2 |
-
import logging
|
| 3 |
-
import os
|
| 4 |
-
import random
|
| 5 |
-
|
| 6 |
-
import nltk
|
| 7 |
-
import numpy as np
|
| 8 |
-
import pandas as pd
|
| 9 |
-
from config import ( # LOG_FILE,
|
| 10 |
-
API_ERROR,
|
| 11 |
-
IGNORE_BY_API_ERROR,
|
| 12 |
-
SEED,
|
| 13 |
-
)
|
| 14 |
-
from datasets import load_dataset
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
def print_and_log(message: str):
|
| 18 |
-
# TODO: redefine logging
|
| 19 |
-
"""
|
| 20 |
-
Log message.
|
| 21 |
-
|
| 22 |
-
Args:
|
| 23 |
-
message (str): The message to be printed and logged.
|
| 24 |
-
"""
|
| 25 |
-
logging.info(message)
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
def write_to_file(filename: str, content: str):
|
| 29 |
-
"""
|
| 30 |
-
Writes the given content to a specified file.
|
| 31 |
-
|
| 32 |
-
Args:
|
| 33 |
-
filename (str): The path to the file to write content.
|
| 34 |
-
content (str): The content to be written.
|
| 35 |
-
"""
|
| 36 |
-
print(content)
|
| 37 |
-
with open(filename, "a+", encoding="utf-8") as file:
|
| 38 |
-
file.write(content)
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
def write_new_data(
|
| 42 |
-
output_file: str,
|
| 43 |
-
current_data: dict,
|
| 44 |
-
column_names: list,
|
| 45 |
-
) -> None:
|
| 46 |
-
"""
|
| 47 |
-
Writes a new row of data to a CSV file.
|
| 48 |
-
|
| 49 |
-
Args:
|
| 50 |
-
output_file (str): The path to the output CSV file.
|
| 51 |
-
current_data (dict): A dictionary containing the data to be written.
|
| 52 |
-
column_names (list): A list of column names in the desired order.
|
| 53 |
-
|
| 54 |
-
Returns:
|
| 55 |
-
None
|
| 56 |
-
"""
|
| 57 |
-
# Extract data in the specified order based on column names
|
| 58 |
-
data_row = [current_data[column] for column in column_names]
|
| 59 |
-
|
| 60 |
-
# Write the data row to the CSV file
|
| 61 |
-
write_to_csv(output_file, data_row)
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
def write_to_csv(filename: str, row_data: list) -> None:
|
| 65 |
-
"""
|
| 66 |
-
Appends a row of data to a CSV file.
|
| 67 |
-
|
| 68 |
-
Args:
|
| 69 |
-
filename (str): The name of the CSV file.
|
| 70 |
-
row_data: A list of values to be written as a row.
|
| 71 |
-
|
| 72 |
-
Returns:
|
| 73 |
-
None
|
| 74 |
-
"""
|
| 75 |
-
# Open the CSV file in append mode, creating it if it doesn't exist
|
| 76 |
-
with open(filename, "a+", encoding="UTF8", newline="") as file:
|
| 77 |
-
writer = csv.writer(file)
|
| 78 |
-
writer.writerow(row_data)
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
def count_csv_lines(filename: str) -> int:
|
| 82 |
-
"""Counts the number of lines in a CSV file, excluding the header row.
|
| 83 |
-
|
| 84 |
-
Args:
|
| 85 |
-
filename (str): The path to the CSV file.
|
| 86 |
-
|
| 87 |
-
Returns:
|
| 88 |
-
int: The number of lines in the CSV file, excluding the header row.
|
| 89 |
-
"""
|
| 90 |
-
file_data = pd.read_csv(filename, sep=",").values
|
| 91 |
-
return len(file_data)
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
def read_csv_data(input_file: str) -> np.ndarray:
|
| 95 |
-
"""
|
| 96 |
-
Reads data from a specified CSV file.
|
| 97 |
-
|
| 98 |
-
Args:
|
| 99 |
-
file_path (str): The path to the CSV file.
|
| 100 |
-
|
| 101 |
-
Returns:
|
| 102 |
-
numpy.ndarray: The data from the CSV file.
|
| 103 |
-
"""
|
| 104 |
-
file_data = pd.read_csv(
|
| 105 |
-
input_file,
|
| 106 |
-
dtype="string",
|
| 107 |
-
keep_default_na=False,
|
| 108 |
-
sep=",",
|
| 109 |
-
).values
|
| 110 |
-
return file_data
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
def get_column(input_file: str, column_name: str) -> np.ndarray:
|
| 114 |
-
"""
|
| 115 |
-
Retrieves a specific column from a CSV file as a NumPy array.
|
| 116 |
-
|
| 117 |
-
Args:
|
| 118 |
-
input_file (str): The path to the CSV file.
|
| 119 |
-
column_name (str): The name of the column to extract.
|
| 120 |
-
|
| 121 |
-
Returns:
|
| 122 |
-
np.ndarray: Values from the specified column.
|
| 123 |
-
"""
|
| 124 |
-
# Read CSV, preserving string data types and handling missing values
|
| 125 |
-
df = pd.read_csv(
|
| 126 |
-
input_file,
|
| 127 |
-
dtype="string",
|
| 128 |
-
keep_default_na=False,
|
| 129 |
-
sep=",",
|
| 130 |
-
)
|
| 131 |
-
|
| 132 |
-
# Extract the specified column as a NumPy array
|
| 133 |
-
column_data = df[column_name].values
|
| 134 |
-
return column_data
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
def generate_column_names(categories: list) -> list:
|
| 138 |
-
"""
|
| 139 |
-
Generates column names for a pairwise comparison matrix.
|
| 140 |
-
|
| 141 |
-
Args:
|
| 142 |
-
categories (list): A list of categories.
|
| 143 |
-
|
| 144 |
-
Returns:
|
| 145 |
-
list: A list of column names,
|
| 146 |
-
including a 'human' column and pairwise combinations.
|
| 147 |
-
"""
|
| 148 |
-
column_names = ["human"]
|
| 149 |
-
|
| 150 |
-
# Add individual category names as column names
|
| 151 |
-
column_names.extend(categories)
|
| 152 |
-
|
| 153 |
-
# Add pairwise combinations of categories as column names
|
| 154 |
-
for i in categories:
|
| 155 |
-
for j in categories:
|
| 156 |
-
column_names.append(f"{i}_{j}")
|
| 157 |
-
|
| 158 |
-
# TODO: improve?
|
| 159 |
-
# for i in range(len(categories)):
|
| 160 |
-
# for j in range(i + 1, len(categories)):
|
| 161 |
-
# column_names.append(f"{categories[i]}_{categories[j]}")
|
| 162 |
-
|
| 163 |
-
return column_names
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
def normalize_text(input_text: str) -> str:
|
| 167 |
-
"""
|
| 168 |
-
Normalizes the given text by removing unnecessary characters and
|
| 169 |
-
formatting it for better readability.
|
| 170 |
-
|
| 171 |
-
Args:
|
| 172 |
-
input_text (str): The input text to be normalized.
|
| 173 |
-
|
| 174 |
-
Returns:
|
| 175 |
-
The normalized text.
|
| 176 |
-
|
| 177 |
-
This function performs the following transformations:
|
| 178 |
-
1. Strips leading and trailing whitespace
|
| 179 |
-
2. Removes double asterisks (`**`)
|
| 180 |
-
3. Replaces newlines with spaces
|
| 181 |
-
4. Removes extra spaces
|
| 182 |
-
"""
|
| 183 |
-
processed_text = input_text.strip()
|
| 184 |
-
processed_text = processed_text.replace("**", "")
|
| 185 |
-
processed_text = processed_text.replace("\n", " ")
|
| 186 |
-
processed_text = processed_text.replace(" ", " ") # Remove extra spaces
|
| 187 |
-
# TODO: what if 3 or more spaces
|
| 188 |
-
return processed_text
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
def refine_candidate_text(input_text: str, candidate_text: str) -> str:
|
| 192 |
-
# TODO: how different with processing text
|
| 193 |
-
"""
|
| 194 |
-
Removes specific surrounding marks from the candidate text if they are
|
| 195 |
-
present in the input text with an excess of exactly two occurrences.
|
| 196 |
-
|
| 197 |
-
Args:
|
| 198 |
-
input_text (str): The original text.
|
| 199 |
-
candidate (str): The candidate text to be refined.
|
| 200 |
-
|
| 201 |
-
Returns:
|
| 202 |
-
str: The refined candidate text.
|
| 203 |
-
"""
|
| 204 |
-
|
| 205 |
-
# Create a copy of the candidate string and strip whitespace
|
| 206 |
-
refined_candidate = candidate_text.strip()
|
| 207 |
-
|
| 208 |
-
# Iterate through each mark
|
| 209 |
-
for mark in ["```", "'", '"']:
|
| 210 |
-
# Count occurrences of the mark in input_text and refined_candidate
|
| 211 |
-
count_input_text = input_text.count(mark)
|
| 212 |
-
count_refined_candidate = refined_candidate.count(mark)
|
| 213 |
-
|
| 214 |
-
# Check if the mark should be stripped
|
| 215 |
-
if (
|
| 216 |
-
count_refined_candidate == count_input_text + 2
|
| 217 |
-
and refined_candidate.startswith(mark)
|
| 218 |
-
and refined_candidate.endswith(mark)
|
| 219 |
-
):
|
| 220 |
-
# Strip the mark from both ends of the refined_candidate
|
| 221 |
-
refined_candidate = refined_candidate.strip(mark)
|
| 222 |
-
|
| 223 |
-
return refined_candidate
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
def generate_file_name(
|
| 227 |
-
existing_data_file: str,
|
| 228 |
-
existing_kinds: list,
|
| 229 |
-
new_kinds: list,
|
| 230 |
-
) -> str:
|
| 231 |
-
"""
|
| 232 |
-
Generates a new file name based on the path of an existing data file and a
|
| 233 |
-
combination of existing and new kinds.
|
| 234 |
-
|
| 235 |
-
Args:
|
| 236 |
-
existing_data_file (str): The path to the existing data file.
|
| 237 |
-
existing_kinds (list): A list of existing kinds.
|
| 238 |
-
new_kinds (list): A list of new kinds.
|
| 239 |
-
|
| 240 |
-
Returns:
|
| 241 |
-
str: The generated file name with the full path.
|
| 242 |
-
"""
|
| 243 |
-
|
| 244 |
-
# Combine existing and new kinds into a single list
|
| 245 |
-
combined_kinds = existing_kinds + new_kinds
|
| 246 |
-
|
| 247 |
-
# Get the directory path of the existing data file
|
| 248 |
-
directory_path = os.path.dirname(existing_data_file)
|
| 249 |
-
|
| 250 |
-
# Create a new file name by joining the kinds with underscores and adding
|
| 251 |
-
# a suffix
|
| 252 |
-
# TODO: move to config file
|
| 253 |
-
new_file_name = "_".join(combined_kinds) + "_with_best_similarity.csv"
|
| 254 |
-
|
| 255 |
-
# Combine the directory path with the new file name to get the full output
|
| 256 |
-
# file path
|
| 257 |
-
output_file_path = os.path.join(directory_path, new_file_name)
|
| 258 |
-
|
| 259 |
-
return output_file_path
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
def shuffle(data: list[list], seed: int) -> None:
|
| 263 |
-
"""
|
| 264 |
-
Shuffles the elements within each sublist of the given data structure.
|
| 265 |
-
|
| 266 |
-
Args:
|
| 267 |
-
data (list of lists): The array containing sublists to shuffle.
|
| 268 |
-
seed (int): The seed value for the random number generator.
|
| 269 |
-
|
| 270 |
-
Returns:
|
| 271 |
-
None
|
| 272 |
-
"""
|
| 273 |
-
for sublist in data:
|
| 274 |
-
random.Random(seed).shuffle(sublist)
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
def generate_human_with_shuffle(
|
| 278 |
-
dataset_name: str,
|
| 279 |
-
column_name: str,
|
| 280 |
-
num_samples: int,
|
| 281 |
-
output_file: str,
|
| 282 |
-
) -> None:
|
| 283 |
-
"""
|
| 284 |
-
Generates a shuffled list of sentences from the dataset and writes them to
|
| 285 |
-
a CSV file.
|
| 286 |
-
|
| 287 |
-
Args:
|
| 288 |
-
dataset_name (str): The name of the dataset to load.
|
| 289 |
-
column_name (str): The column name to extract sentences from.
|
| 290 |
-
num_samples (int): The number of samples to process.
|
| 291 |
-
output_file (str): The path to the output CSV file.
|
| 292 |
-
|
| 293 |
-
Returns:
|
| 294 |
-
None
|
| 295 |
-
"""
|
| 296 |
-
# Load the dataset
|
| 297 |
-
dataset = load_dataset(dataset_name)
|
| 298 |
-
data = dataset["train"]
|
| 299 |
-
|
| 300 |
-
lines = []
|
| 301 |
-
# Tokenize sentences and add to the lines list
|
| 302 |
-
for sample in data:
|
| 303 |
-
nltk_tokens = nltk.sent_tokenize(sample[column_name])
|
| 304 |
-
lines.extend(nltk_tokens)
|
| 305 |
-
|
| 306 |
-
# Filter out empty lines
|
| 307 |
-
filtered_lines = [line for line in lines if line != ""]
|
| 308 |
-
lines = filtered_lines
|
| 309 |
-
|
| 310 |
-
# Shuffle the lines
|
| 311 |
-
shuffle([lines], seed=SEED)
|
| 312 |
-
|
| 313 |
-
# Ensure the output file exists and write the header if it doesn't
|
| 314 |
-
if not os.path.exists(output_file):
|
| 315 |
-
header = ["human"]
|
| 316 |
-
write_to_csv(output_file, header)
|
| 317 |
-
|
| 318 |
-
# Get the number of lines already processed in the output file
|
| 319 |
-
number_of_processed_lines = count_csv_lines(output_file)
|
| 320 |
-
|
| 321 |
-
# Print the initial lines to be processed
|
| 322 |
-
print(f"Lines before processing: {lines[:num_samples]}")
|
| 323 |
-
|
| 324 |
-
# Slice the lines list to get the unprocessed lines
|
| 325 |
-
lines = lines[number_of_processed_lines:num_samples]
|
| 326 |
-
|
| 327 |
-
# Print the lines after slicing
|
| 328 |
-
print(f"Lines after slicing: {lines}")
|
| 329 |
-
|
| 330 |
-
# Process each line and write to the output file
|
| 331 |
-
for index, human in enumerate(lines):
|
| 332 |
-
normalized_text = normalize_text(human)
|
| 333 |
-
output_data = [normalized_text]
|
| 334 |
-
write_to_csv(output_file, output_data)
|
| 335 |
-
print(
|
| 336 |
-
f"Processed {index + 1} / {len(lines)};\
|
| 337 |
-
Total processed:\
|
| 338 |
-
{number_of_processed_lines + index + 1} / {num_samples}",
|
| 339 |
-
)
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
def split_data(data: list, train_ratio: float) -> list[list, list]:
|
| 343 |
-
"""
|
| 344 |
-
Splits a dataset into training and testing sets.
|
| 345 |
-
|
| 346 |
-
Args:
|
| 347 |
-
data (list): The input dataset.
|
| 348 |
-
train_ratio (float): The proportion of data to use for training.
|
| 349 |
-
|
| 350 |
-
Returns:
|
| 351 |
-
The training and testing sets.
|
| 352 |
-
"""
|
| 353 |
-
|
| 354 |
-
# Calculate the number of samples for training
|
| 355 |
-
train_size = int(len(data) * train_ratio)
|
| 356 |
-
|
| 357 |
-
# Split the data into training and testing sets
|
| 358 |
-
train_data = data[:train_size]
|
| 359 |
-
test_data = data[train_size:]
|
| 360 |
-
|
| 361 |
-
return train_data, test_data
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
def combine_text_with_BERT_format(text_list: list[str]) -> str:
|
| 365 |
-
"""
|
| 366 |
-
Formats a list of texts into a single string suitable for BERT input.
|
| 367 |
-
|
| 368 |
-
Args:
|
| 369 |
-
text_list (list[str]): A list of text strings.
|
| 370 |
-
|
| 371 |
-
Returns:
|
| 372 |
-
str: A single string formatted with BERT's special tokens.
|
| 373 |
-
"""
|
| 374 |
-
# TODO: simplify this function
|
| 375 |
-
# combined_text = f"<s>{text_list[0]}</s>"
|
| 376 |
-
# for i in range(1, len(text_list)):
|
| 377 |
-
# combined_text += f"</s>{text_list[i]}</s>"
|
| 378 |
-
# return combined_text
|
| 379 |
-
|
| 380 |
-
formatted_text = "<s>" + "</s><s>".join(text_list) + "</s>"
|
| 381 |
-
return formatted_text
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
def check_api_error(data: list):
|
| 385 |
-
"""
|
| 386 |
-
Checks if the given data contains an API error or an indication to ignore
|
| 387 |
-
an API error.
|
| 388 |
-
|
| 389 |
-
Args:
|
| 390 |
-
data (list): A list of items to check.
|
| 391 |
-
|
| 392 |
-
Returns:
|
| 393 |
-
bool: True if an API error or ignore indication is found,
|
| 394 |
-
False otherwise.
|
| 395 |
-
"""
|
| 396 |
-
for item in data:
|
| 397 |
-
# Check for API error indicators
|
| 398 |
-
if item in (API_ERROR, IGNORE_BY_API_ERROR):
|
| 399 |
-
return True # Return True if at least an error indicator is found
|
| 400 |
-
return False # Return False if no error indicators are found
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
def calculate_required_models(num_columns: int) -> int:
|
| 404 |
-
"""
|
| 405 |
-
Calculates the minimum number of models required to generate the specified number of columns.
|
| 406 |
-
|
| 407 |
-
Args:
|
| 408 |
-
num_columns (int): The total number of columns to generate.
|
| 409 |
-
|
| 410 |
-
Returns:
|
| 411 |
-
int: The minimum number of models required.
|
| 412 |
-
|
| 413 |
-
Raises:
|
| 414 |
-
ValueError: If the number of columns cannot be achieved with the current model configuration.
|
| 415 |
-
"""
|
| 416 |
-
|
| 417 |
-
num_models = 0
|
| 418 |
-
count_human = 1 # Initial count representing human input
|
| 419 |
-
|
| 420 |
-
# TODO: simplify this function
|
| 421 |
-
while True:
|
| 422 |
-
count_single = num_models # Single model count
|
| 423 |
-
count_pair = num_models * num_models # Pair model count
|
| 424 |
-
|
| 425 |
-
total_count = count_human + count_single + count_pair
|
| 426 |
-
|
| 427 |
-
if total_count == num_columns:
|
| 428 |
-
return num_models
|
| 429 |
-
elif total_count > num_columns:
|
| 430 |
-
raise Exception(
|
| 431 |
-
"Cannot calculate the number of models to match the number of columns", # noqa: E501
|
| 432 |
-
)
|
| 433 |
-
|
| 434 |
-
num_models += 1
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
def parse_multimodal_data(multimodel_csv_file: list) -> list:
|
| 438 |
-
"""
|
| 439 |
-
Parses multimodal data from a CSV file into a structured format.
|
| 440 |
-
|
| 441 |
-
Args:
|
| 442 |
-
multimodel_csv_file (str): Path to the CSV file.
|
| 443 |
-
|
| 444 |
-
Returns:
|
| 445 |
-
list: A list of dictionaries, each containing 'human', 'single', and
|
| 446 |
-
'pair' keys.
|
| 447 |
-
|
| 448 |
-
Raises:
|
| 449 |
-
Exception: If there is an error in reading the CSV file or processing
|
| 450 |
-
the data.
|
| 451 |
-
"""
|
| 452 |
-
# TODO: simplify this function
|
| 453 |
-
|
| 454 |
-
# Read CSV data into a list of lists
|
| 455 |
-
input_data = read_csv_data(multimodel_csv_file)
|
| 456 |
-
|
| 457 |
-
# Initialize the result list
|
| 458 |
-
structured_data = []
|
| 459 |
-
|
| 460 |
-
# Calculate the number of models based on the number of columns in the first row # noqa: E501
|
| 461 |
-
num_models = calculate_required_models(len(input_data[0]))
|
| 462 |
-
|
| 463 |
-
# Process each row in the input data
|
| 464 |
-
for row in input_data:
|
| 465 |
-
row_data = {}
|
| 466 |
-
index = 0
|
| 467 |
-
|
| 468 |
-
# Extract human data
|
| 469 |
-
row_data["human"] = row[index]
|
| 470 |
-
index += 1
|
| 471 |
-
|
| 472 |
-
# Extract single model data
|
| 473 |
-
single_model_data = []
|
| 474 |
-
for _ in range(num_models):
|
| 475 |
-
single_model_data.append(row[index])
|
| 476 |
-
index += 1
|
| 477 |
-
row_data["single"] = single_model_data
|
| 478 |
-
|
| 479 |
-
# Extract pair model data
|
| 480 |
-
pair_model_data = []
|
| 481 |
-
for _ in range(num_models):
|
| 482 |
-
sub_pair_data = []
|
| 483 |
-
for _ in range(num_models):
|
| 484 |
-
sub_pair_data.append(row[index])
|
| 485 |
-
index += 1
|
| 486 |
-
pair_model_data.append(sub_pair_data)
|
| 487 |
-
row_data["pair"] = pair_model_data
|
| 488 |
-
|
| 489 |
-
# Append the structured row data to the result list
|
| 490 |
-
structured_data.append(row_data)
|
| 491 |
-
|
| 492 |
-
return structured_data
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
def check_error(data_item: dict) -> bool:
|
| 496 |
-
"""
|
| 497 |
-
Checks if the given data item contains any API errors.
|
| 498 |
-
An API error is indicated by a specific error message
|
| 499 |
-
or code within the text.
|
| 500 |
-
|
| 501 |
-
Args:
|
| 502 |
-
data_item (dict): A dictionary containing 'human', 'single',
|
| 503 |
-
and 'pair' fields.
|
| 504 |
-
|
| 505 |
-
Returns:
|
| 506 |
-
bool: True if an API error is found, otherwise False.
|
| 507 |
-
"""
|
| 508 |
-
# Check for API error in the 'human' field
|
| 509 |
-
if check_api_error(data_item["human"]):
|
| 510 |
-
return True
|
| 511 |
-
|
| 512 |
-
# Check for API error in the 'single' model data
|
| 513 |
-
for single_text in data_item["single"]:
|
| 514 |
-
if check_api_error(single_text):
|
| 515 |
-
return True
|
| 516 |
-
|
| 517 |
-
# Get the number of models from the 'single' model data
|
| 518 |
-
num_models = len(data_item["single"])
|
| 519 |
-
|
| 520 |
-
# Check for API error in the 'pair' model data
|
| 521 |
-
for i in range(num_models):
|
| 522 |
-
for j in range(num_models):
|
| 523 |
-
if check_api_error(data_item["pair"][i][j]):
|
| 524 |
-
return True
|
| 525 |
-
|
| 526 |
-
# No errors found
|
| 527 |
-
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/texts/SimLLM/SimLLM.py
DELETED
|
@@ -1,1667 +0,0 @@
|
|
| 1 |
-
|
| 2 |
-
import os
|
| 3 |
-
import shutil
|
| 4 |
-
import random
|
| 5 |
-
import pandas as pd
|
| 6 |
-
import numpy as np
|
| 7 |
-
import nltk
|
| 8 |
-
import google.generativeai as genai
|
| 9 |
-
import csv
|
| 10 |
-
from transformers import (
|
| 11 |
-
AutoTokenizer,
|
| 12 |
-
DataCollatorWithPadding,
|
| 13 |
-
AutoModelForSequenceClassification,
|
| 14 |
-
EarlyStoppingCallback,
|
| 15 |
-
TrainerCallback,
|
| 16 |
-
TrainingArguments,
|
| 17 |
-
Trainer
|
| 18 |
-
)
|
| 19 |
-
from openai import OpenAI
|
| 20 |
-
from sklearn.neural_network import MLPClassifier
|
| 21 |
-
from sklearn.metrics import roc_auc_score, accuracy_score
|
| 22 |
-
from os.path import join
|
| 23 |
-
from langchain.chat_models import ChatOpenAI
|
| 24 |
-
from datasets import load_metric, load_dataset, Dataset
|
| 25 |
-
from copy import deepcopy
|
| 26 |
-
from bart_score import BARTScorer
|
| 27 |
-
import argparse
|
| 28 |
-
|
| 29 |
-
# Constants
|
| 30 |
-
TOGETHER_API_KEY = "your_together_api_key"
|
| 31 |
-
OPENAI_API_KEY = "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"
|
| 32 |
-
GEMINI_API_KEY = "your_gemini_key"
|
| 33 |
-
LOG_FILE = "data/99_log.txt"
|
| 34 |
-
OUTPUT_FILE = "data/result.txt"
|
| 35 |
-
METRIC_NAME = "roc_auc"
|
| 36 |
-
|
| 37 |
-
TRAIN_RATIO = 0.8
|
| 38 |
-
VAL_RATIO = 0.1
|
| 39 |
-
NUMBER_OF_MAX_EPOCH_WITH_EARLY_STOPPING = 10
|
| 40 |
-
PATIENCE = 3
|
| 41 |
-
BATCH_SIZE = 8
|
| 42 |
-
OPTIMIZED_METRIC = "roc_auc"
|
| 43 |
-
SEED = 0
|
| 44 |
-
TEMPERATURE = 0.0
|
| 45 |
-
IS_OUTPUT_NORMALIZATION = False
|
| 46 |
-
RATIO = 0.9
|
| 47 |
-
HUMAN_LABEL = 0
|
| 48 |
-
MACHINE_LABEL = 1
|
| 49 |
-
BART = "bart"
|
| 50 |
-
|
| 51 |
-
MULTIMODEL = "multimodel"
|
| 52 |
-
SINGLE_FROM_MULTIMODEL = "single_from_multimodel"
|
| 53 |
-
|
| 54 |
-
# Environment setup
|
| 55 |
-
os.environ['OPENAI_API_KEY'] = OPENAI_API_KEY
|
| 56 |
-
os.environ['CURL_CA_BUNDLE'] = ''
|
| 57 |
-
os.environ['REQUESTS_CA_BUNDLE'] = ''
|
| 58 |
-
|
| 59 |
-
# Download necessary NLTK data
|
| 60 |
-
nltk.download('punkt')
|
| 61 |
-
nltk.download('punkt_tab')
|
| 62 |
-
|
| 63 |
-
# Chat model configurations
|
| 64 |
-
chat_model = ChatOpenAI(temperature=TEMPERATURE, model_name="gpt-3.5-turbo-0125")
|
| 65 |
-
|
| 66 |
-
# API Models and Paths
|
| 67 |
-
CHATGPT = "ChatGPT"
|
| 68 |
-
GEMINI = "Gemini"
|
| 69 |
-
# LLAMA_2_70_CHAT_TEMP_0 = "LLaMa"
|
| 70 |
-
API_ERROR = "API_ERROR"
|
| 71 |
-
IGNORE_BY_API_ERROR = "IGNORE_BY_API_ERROR"
|
| 72 |
-
|
| 73 |
-
# Initialize BARTScorer
|
| 74 |
-
bart_scorer = BARTScorer(device='cuda:0', checkpoint="facebook/bart-large-cnn")
|
| 75 |
-
|
| 76 |
-
# Generative AI configuration
|
| 77 |
-
genai.configure(api_key=GEMINI_API_KEY, transport='rest')
|
| 78 |
-
generation_config = {
|
| 79 |
-
"temperature": TEMPERATURE,
|
| 80 |
-
}
|
| 81 |
-
GEMINI_MODEL = genai.GenerativeModel('gemini-pro', generation_config=generation_config)
|
| 82 |
-
|
| 83 |
-
# Model paths
|
| 84 |
-
MODEL_PATHS = {
|
| 85 |
-
"LLaMa": "meta-llama/Llama-2-70b-chat-hf",
|
| 86 |
-
"QWEN": "Qwen/Qwen1.5-72B-Chat",
|
| 87 |
-
"Yi": "NousResearch/Nous-Hermes-2-Yi-34B",
|
| 88 |
-
"Mixtral": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 89 |
-
"OLMo": "allenai/OLMo-7B-Instruct",
|
| 90 |
-
"Phi": "microsoft/phi-2",
|
| 91 |
-
"OpenChat": "openchat/openchat-3.5-1210",
|
| 92 |
-
"WizardLM": "WizardLM/WizardLM-13B-V1.2",
|
| 93 |
-
"Vicuna": "lmsys/vicuna-13b-v1.5"
|
| 94 |
-
}
|
| 95 |
-
|
| 96 |
-
TOGETHER_PATH ='https://api.together.xyz'
|
| 97 |
-
|
| 98 |
-
# Roberta model configurations
|
| 99 |
-
ROBERTA_BASE = "roberta-base"
|
| 100 |
-
ROBERTA_LARGE = "roberta-large"
|
| 101 |
-
ROBERTA_MODEL_PATHS = {
|
| 102 |
-
ROBERTA_BASE: "roberta-base",
|
| 103 |
-
ROBERTA_LARGE: "roberta-large"
|
| 104 |
-
}
|
| 105 |
-
LEARNING_RATES = {
|
| 106 |
-
ROBERTA_BASE: 2e-5,
|
| 107 |
-
ROBERTA_LARGE: 8e-6
|
| 108 |
-
}
|
| 109 |
-
MODEL_NAME = ROBERTA_BASE
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
# Tokenizer initialization
|
| 114 |
-
tokenizer = AutoTokenizer.from_pretrained(ROBERTA_MODEL_PATHS[MODEL_NAME])
|
| 115 |
-
|
| 116 |
-
# Custom callback for Trainer
|
| 117 |
-
class CustomCallback(TrainerCallback):
|
| 118 |
-
"""
|
| 119 |
-
Custom callback to evaluate the training dataset at the end of each epoch.
|
| 120 |
-
"""
|
| 121 |
-
def __init__(self, trainer) -> None:
|
| 122 |
-
super().__init__()
|
| 123 |
-
self._trainer = trainer
|
| 124 |
-
|
| 125 |
-
def on_epoch_end(self, args, state, control, **kwargs):
|
| 126 |
-
"""
|
| 127 |
-
At the end of each epoch, evaluate the training dataset.
|
| 128 |
-
"""
|
| 129 |
-
if control.should_evaluate:
|
| 130 |
-
control_copy = deepcopy(control)
|
| 131 |
-
self._trainer.evaluate(eval_dataset=self._trainer.train_dataset, metric_key_prefix="train")
|
| 132 |
-
return control_copy
|
| 133 |
-
|
| 134 |
-
# Metric loading
|
| 135 |
-
metric = load_metric(METRIC_NAME)
|
| 136 |
-
|
| 137 |
-
def compute_metrics(evaluation_predictions):
|
| 138 |
-
"""
|
| 139 |
-
Function to compute evaluation metrics for model predictions.
|
| 140 |
-
|
| 141 |
-
Parameters:
|
| 142 |
-
evaluation_predictions (tuple): A tuple containing two elements:
|
| 143 |
-
- predictions (array-like): The raw prediction scores from the model.
|
| 144 |
-
- labels (array-like): The true labels for the evaluation data.
|
| 145 |
-
|
| 146 |
-
Returns:
|
| 147 |
-
dict: A dictionary containing the computed evaluation metrics.
|
| 148 |
-
"""
|
| 149 |
-
# Unpack predictions and labels from the input tuple
|
| 150 |
-
raw_predictions, true_labels = evaluation_predictions
|
| 151 |
-
|
| 152 |
-
# Convert raw prediction scores to predicted class labels
|
| 153 |
-
predicted_labels = np.argmax(raw_predictions, axis=1)
|
| 154 |
-
|
| 155 |
-
# Compute and return the evaluation metrics
|
| 156 |
-
return metric.compute(prediction_scores=predicted_labels, references=true_labels, average="macro")
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
def abstract_proofread(model_path, temperature, base_url, api_key, prompt):
|
| 160 |
-
"""
|
| 161 |
-
Function to proofread an abstract using an AI language model.
|
| 162 |
-
|
| 163 |
-
Parameters:
|
| 164 |
-
model_path (str): The path or identifier of the AI model to use.
|
| 165 |
-
temperature (float): Sampling temperature for the model's output.
|
| 166 |
-
base_url (str): The base URL for the API endpoint.
|
| 167 |
-
api_key (str): The API key for authentication.
|
| 168 |
-
prompt (str): The text prompt to provide to the AI for proofreading.
|
| 169 |
-
|
| 170 |
-
Returns:
|
| 171 |
-
str: The proofread abstract generated by the AI model.
|
| 172 |
-
"""
|
| 173 |
-
# Initialize the AI client with the provided API key and base URL
|
| 174 |
-
ai_client = OpenAI(api_key=api_key, base_url=base_url)
|
| 175 |
-
|
| 176 |
-
# Create a chat completion request with the system message and user prompt
|
| 177 |
-
chat_completion = ai_client.chat.completions.create(
|
| 178 |
-
messages=[
|
| 179 |
-
{
|
| 180 |
-
"role": "system",
|
| 181 |
-
"content": "You are an AI assistant",
|
| 182 |
-
},
|
| 183 |
-
{
|
| 184 |
-
"role": "user",
|
| 185 |
-
"content": prompt,
|
| 186 |
-
}
|
| 187 |
-
],
|
| 188 |
-
model=model_path,
|
| 189 |
-
max_tokens=1024,
|
| 190 |
-
temperature=temperature,
|
| 191 |
-
)
|
| 192 |
-
|
| 193 |
-
# Return the content of the first choice's message
|
| 194 |
-
return chat_completion.choices[0].message.content
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
def proofread_by_model_name(model_name, input_text, normalize_output):
|
| 199 |
-
"""
|
| 200 |
-
Proofreads the given input text using the specified model.
|
| 201 |
-
|
| 202 |
-
Args:
|
| 203 |
-
model_name (str): The name of the model to use for proofreading.
|
| 204 |
-
input_text (str): The text to be proofread.
|
| 205 |
-
normalize_output (bool): Whether to normalize the output or not.
|
| 206 |
-
|
| 207 |
-
Returns:
|
| 208 |
-
str: The proofread text.
|
| 209 |
-
"""
|
| 210 |
-
# Constants for API access
|
| 211 |
-
base_url = TOGETHER_PATH
|
| 212 |
-
api_key = TOGETHER_API_KEY
|
| 213 |
-
temperature = TEMPERATURE
|
| 214 |
-
|
| 215 |
-
# Retrieve the model path from the dictionary
|
| 216 |
-
if model_name in MODEL_PATHS:
|
| 217 |
-
model_path = MODEL_PATHS[model_name]
|
| 218 |
-
else:
|
| 219 |
-
raise ValueError("Model name not found in the dictionary.")
|
| 220 |
-
|
| 221 |
-
# Formulate the prompt for the model
|
| 222 |
-
prompt = f"Proofreading for the text: ```{input_text}```"
|
| 223 |
-
|
| 224 |
-
# Apply output normalization if required
|
| 225 |
-
if normalize_output:
|
| 226 |
-
prompt = output_normalization(prompt)
|
| 227 |
-
|
| 228 |
-
# Debugging: Print the prompt
|
| 229 |
-
print(f"Prompt: {prompt}")
|
| 230 |
-
|
| 231 |
-
# Call the abstract proofreading function with the prepared parameters
|
| 232 |
-
return abstract_proofread(model_path, temperature, base_url, api_key, prompt)
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
def gemini_proofread(input_text, normalize_output):
|
| 236 |
-
"""
|
| 237 |
-
Proofreads the given text using the GEMINI_MODEL.
|
| 238 |
-
|
| 239 |
-
Parameters:
|
| 240 |
-
input_text (str): The text to be proofread.
|
| 241 |
-
normalize_output (bool): Flag indicating whether to normalize the output.
|
| 242 |
-
|
| 243 |
-
Returns:
|
| 244 |
-
str: The proofread text.
|
| 245 |
-
"""
|
| 246 |
-
prompt = f"Proofreading for the text: ```{input_text}```"
|
| 247 |
-
if normalize_output:
|
| 248 |
-
prompt = output_normalization(prompt)
|
| 249 |
-
response = GEMINI_MODEL.generate_content(prompt)
|
| 250 |
-
return response.text
|
| 251 |
-
|
| 252 |
-
def print_and_log(message):
|
| 253 |
-
"""
|
| 254 |
-
Prints and logs the given message to a log file.
|
| 255 |
-
|
| 256 |
-
Parameters:
|
| 257 |
-
message (str): The message to be printed and logged.
|
| 258 |
-
"""
|
| 259 |
-
print(message)
|
| 260 |
-
with open(LOG_FILE, "a+", encoding='utf-8') as log_file:
|
| 261 |
-
log_file.write(message + "\n")
|
| 262 |
-
|
| 263 |
-
def write_to_file(filename, content):
|
| 264 |
-
"""
|
| 265 |
-
Writes the given content to a specified file.
|
| 266 |
-
|
| 267 |
-
Parameters:
|
| 268 |
-
filename (str): The name of the file to write to.
|
| 269 |
-
content (str): The content to be written.
|
| 270 |
-
"""
|
| 271 |
-
print(content)
|
| 272 |
-
with open(filename, "a+", encoding='utf-8') as file:
|
| 273 |
-
file.write(content)
|
| 274 |
-
|
| 275 |
-
def output_normalization(prompt):
|
| 276 |
-
"""
|
| 277 |
-
Normalizes the output by appending a specific instruction to the prompt.
|
| 278 |
-
|
| 279 |
-
Parameters:
|
| 280 |
-
prompt (str): The initial prompt.
|
| 281 |
-
|
| 282 |
-
Returns:
|
| 283 |
-
str: The modified prompt.
|
| 284 |
-
"""
|
| 285 |
-
return prompt + " Please only output the proofread text without any explanation."
|
| 286 |
-
|
| 287 |
-
def chatGPT_proofread(input_text, normalize_output):
|
| 288 |
-
"""
|
| 289 |
-
Proofreads the given text using the chat_model.
|
| 290 |
-
|
| 291 |
-
Parameters:
|
| 292 |
-
input_text (str): The text to be proofread.
|
| 293 |
-
normalize_output (bool): Flag indicating whether to normalize the output.
|
| 294 |
-
|
| 295 |
-
Returns:
|
| 296 |
-
str: The proofread text.
|
| 297 |
-
"""
|
| 298 |
-
prompt = f"Proofreading for the text: ```{input_text}```"
|
| 299 |
-
if normalize_output:
|
| 300 |
-
prompt = output_normalization(prompt)
|
| 301 |
-
|
| 302 |
-
print(f"Starting API call with prompt: {prompt}")
|
| 303 |
-
result = chat_model.predict(prompt)
|
| 304 |
-
print(f"Ending API call with prompt: {prompt}")
|
| 305 |
-
|
| 306 |
-
return result
|
| 307 |
-
|
| 308 |
-
def normalize_text(input_text):
|
| 309 |
-
"""
|
| 310 |
-
Normalizes the given text by removing certain characters and extra spaces.
|
| 311 |
-
|
| 312 |
-
Parameters:
|
| 313 |
-
input_text (str): The text to be normalized.
|
| 314 |
-
|
| 315 |
-
Returns:
|
| 316 |
-
str: The normalized text.
|
| 317 |
-
"""
|
| 318 |
-
result = input_text.strip()
|
| 319 |
-
result = result.replace("**", "")
|
| 320 |
-
result = result.replace("\n", " ")
|
| 321 |
-
result = result.replace(" ", " ") # Remove extra spaces
|
| 322 |
-
return result
|
| 323 |
-
|
| 324 |
-
def write_to_csv(filename, row_data):
|
| 325 |
-
"""
|
| 326 |
-
Writes a row of data to a specified CSV file.
|
| 327 |
-
|
| 328 |
-
Parameters:
|
| 329 |
-
filename (str): The name of the CSV file.
|
| 330 |
-
row_data (list): The row data to be written.
|
| 331 |
-
"""
|
| 332 |
-
with open(filename, 'a+', encoding='UTF8', newline='') as file:
|
| 333 |
-
writer = csv.writer(file)
|
| 334 |
-
writer.writerow(row_data)
|
| 335 |
-
|
| 336 |
-
def number_of_csv_lines(filename):
|
| 337 |
-
"""
|
| 338 |
-
Returns the number of lines in a specified CSV file.
|
| 339 |
-
|
| 340 |
-
Parameters:
|
| 341 |
-
filename (str): The name of the CSV file.
|
| 342 |
-
|
| 343 |
-
Returns:
|
| 344 |
-
int: The number of lines in the CSV file.
|
| 345 |
-
"""
|
| 346 |
-
file_data = pd.read_csv(filename, sep=',').values
|
| 347 |
-
return len(file_data)
|
| 348 |
-
|
| 349 |
-
def read_csv_data(input_file):
|
| 350 |
-
"""
|
| 351 |
-
Reads data from a specified CSV file.
|
| 352 |
-
|
| 353 |
-
Parameters:
|
| 354 |
-
input_file (str): The name of the CSV file.
|
| 355 |
-
|
| 356 |
-
Returns:
|
| 357 |
-
numpy.ndarray: The data read from the CSV file.
|
| 358 |
-
"""
|
| 359 |
-
file_data = pd.read_csv(input_file, dtype='string', keep_default_na=False, sep=',').values
|
| 360 |
-
return file_data
|
| 361 |
-
|
| 362 |
-
def bart_score(text_1, text_2):
|
| 363 |
-
"""
|
| 364 |
-
Computes the BART score between two texts.
|
| 365 |
-
|
| 366 |
-
Parameters:
|
| 367 |
-
text_1 (str): The first text.
|
| 368 |
-
text_2 (str): The second text.
|
| 369 |
-
|
| 370 |
-
Returns:
|
| 371 |
-
float: The BART score.
|
| 372 |
-
"""
|
| 373 |
-
score = bart_scorer.score([text_1], [text_2])
|
| 374 |
-
return score
|
| 375 |
-
|
| 376 |
-
def check_bart_score(input_text, raw_text):
|
| 377 |
-
"""
|
| 378 |
-
Checks if the BART score between input_text and raw_text is above a threshold.
|
| 379 |
-
|
| 380 |
-
Parameters:
|
| 381 |
-
input_text (str): The input text.
|
| 382 |
-
raw_text (str): The raw text to compare against.
|
| 383 |
-
|
| 384 |
-
Returns:
|
| 385 |
-
bool: True if the score is above the threshold, False otherwise.
|
| 386 |
-
"""
|
| 387 |
-
THRESHOLD = -2.459
|
| 388 |
-
normalized_text = normalize_text(raw_text)
|
| 389 |
-
score = bart_score(input_text, normalized_text)[0]
|
| 390 |
-
return score >= THRESHOLD
|
| 391 |
-
|
| 392 |
-
def get_column(input_file, column_name):
|
| 393 |
-
"""
|
| 394 |
-
Retrieves a specific column from a CSV file.
|
| 395 |
-
|
| 396 |
-
Parameters:
|
| 397 |
-
input_file (str): The name of the CSV file.
|
| 398 |
-
column_name (str): The name of the column to retrieve.
|
| 399 |
-
|
| 400 |
-
Returns:
|
| 401 |
-
numpy.ndarray: The values from the specified column.
|
| 402 |
-
"""
|
| 403 |
-
df = pd.read_csv(input_file, dtype='string', keep_default_na=False, sep=',')
|
| 404 |
-
column_data = df[column_name]
|
| 405 |
-
return column_data.values
|
| 406 |
-
|
| 407 |
-
def generate_column_names(categories):
|
| 408 |
-
"""
|
| 409 |
-
Generates a list of column names based on given categories.
|
| 410 |
-
|
| 411 |
-
Parameters:
|
| 412 |
-
categories (list): The list of categories.
|
| 413 |
-
|
| 414 |
-
Returns:
|
| 415 |
-
list: The generated list of column names.
|
| 416 |
-
"""
|
| 417 |
-
column_names = ['human']
|
| 418 |
-
for name in categories:
|
| 419 |
-
column_names.append(name)
|
| 420 |
-
for first in categories:
|
| 421 |
-
for second in categories:
|
| 422 |
-
column_names.append(f"{first}_{second}")
|
| 423 |
-
return column_names
|
| 424 |
-
|
| 425 |
-
def write_new_data(output_file, current_data, column_names):
|
| 426 |
-
"""
|
| 427 |
-
Writes new data to a CSV file based on current data and column names.
|
| 428 |
-
|
| 429 |
-
Parameters:
|
| 430 |
-
output_file (str): The name of the output CSV file.
|
| 431 |
-
current_data (dict): The current data to be written.
|
| 432 |
-
column_names (list): The list of column names.
|
| 433 |
-
"""
|
| 434 |
-
data_row = [current_data[column] for column in column_names]
|
| 435 |
-
write_to_csv(output_file, data_row)
|
| 436 |
-
|
| 437 |
-
def refine(input_text, candidate):
|
| 438 |
-
"""
|
| 439 |
-
Refines the candidate string by removing specific surrounding marks if they are present
|
| 440 |
-
in the input_text with a count difference of exactly 2.
|
| 441 |
-
|
| 442 |
-
Args:
|
| 443 |
-
input_text (str): The original text.
|
| 444 |
-
candidate (str): The candidate text to be refined.
|
| 445 |
-
|
| 446 |
-
Returns:
|
| 447 |
-
str: The refined candidate text.
|
| 448 |
-
"""
|
| 449 |
-
|
| 450 |
-
# Create a copy of the candidate string and strip whitespace
|
| 451 |
-
refined_candidate = candidate.strip()
|
| 452 |
-
|
| 453 |
-
# List of marks to check and potentially remove
|
| 454 |
-
marks = ["```", "'", '"']
|
| 455 |
-
|
| 456 |
-
# Iterate through each mark
|
| 457 |
-
for mark in marks:
|
| 458 |
-
# Count occurrences of the mark in input_text and refined_candidate
|
| 459 |
-
count_input_text = input_text.count(mark)
|
| 460 |
-
count_refined_candidate = refined_candidate.count(mark)
|
| 461 |
-
|
| 462 |
-
# Check if the mark should be stripped
|
| 463 |
-
if (count_refined_candidate == count_input_text + 2 and
|
| 464 |
-
refined_candidate.startswith(mark) and
|
| 465 |
-
refined_candidate.endswith(mark)):
|
| 466 |
-
# Strip the mark from both ends of the refined_candidate
|
| 467 |
-
refined_candidate = refined_candidate.strip(mark)
|
| 468 |
-
|
| 469 |
-
return refined_candidate
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
def extract_by_best_similarity(input_text, raw_text):
|
| 473 |
-
"""
|
| 474 |
-
Extracts the best candidate string from the raw text based on the highest similarity score
|
| 475 |
-
compared to the input text. The similarity score is calculated using the BART score.
|
| 476 |
-
|
| 477 |
-
Args:
|
| 478 |
-
input_text (str): The original text.
|
| 479 |
-
raw_text (str): The raw text containing multiple candidate strings.
|
| 480 |
-
|
| 481 |
-
Returns:
|
| 482 |
-
str: The best candidate string with the highest similarity score.
|
| 483 |
-
Returns the input text if no suitable candidate is found.
|
| 484 |
-
"""
|
| 485 |
-
|
| 486 |
-
# Refine the raw text
|
| 487 |
-
refined_raw_text = refine(input_text, raw_text)
|
| 488 |
-
|
| 489 |
-
# Tokenize the refined raw text into sentences
|
| 490 |
-
raw_candidates = nltk.sent_tokenize(refined_raw_text)
|
| 491 |
-
|
| 492 |
-
# Split sentences further by newlines to get individual candidates
|
| 493 |
-
candidate_list = []
|
| 494 |
-
for sentence in raw_candidates:
|
| 495 |
-
candidate_list.extend(sentence.split("\n"))
|
| 496 |
-
|
| 497 |
-
# Initialize variables to track the best similarity score and the best candidate
|
| 498 |
-
best_similarity = -9999
|
| 499 |
-
best_candidate = ""
|
| 500 |
-
|
| 501 |
-
# Iterate over each candidate to find the best one based on the BART score
|
| 502 |
-
for candidate in candidate_list:
|
| 503 |
-
refined_candidate = refine(input_text, candidate)
|
| 504 |
-
if check_bart_score(input_text, refined_candidate):
|
| 505 |
-
score = bart_score(input_text, refined_candidate)[0]
|
| 506 |
-
if score > best_similarity:
|
| 507 |
-
best_similarity = score
|
| 508 |
-
best_candidate = refined_candidate
|
| 509 |
-
|
| 510 |
-
# Print the best candidate found
|
| 511 |
-
print(f"best_candidate = {best_candidate}")
|
| 512 |
-
|
| 513 |
-
# Return the best candidate if found, otherwise return the input text
|
| 514 |
-
if best_candidate == "":
|
| 515 |
-
return input_text
|
| 516 |
-
return best_candidate
|
| 517 |
-
|
| 518 |
-
def proofread_with_best_similarity(input_text, model_kind):
|
| 519 |
-
"""
|
| 520 |
-
Proofreads the input text using the specified model and extracts the best-corrected text based on similarity.
|
| 521 |
-
|
| 522 |
-
Args:
|
| 523 |
-
input_text (str): The original text to be proofread.
|
| 524 |
-
model_kind (str): The kind of model to use for proofreading (e.g., CHATGPT, GEMINI).
|
| 525 |
-
|
| 526 |
-
Returns:
|
| 527 |
-
tuple: A tuple containing the raw proofread text and the best-corrected text.
|
| 528 |
-
"""
|
| 529 |
-
|
| 530 |
-
# Normalize the input text
|
| 531 |
-
normalized_input_text = normalize_text(input_text)
|
| 532 |
-
print_and_log(f"INPUT = {normalized_input_text}")
|
| 533 |
-
|
| 534 |
-
result_text = ""
|
| 535 |
-
raw_text = ""
|
| 536 |
-
|
| 537 |
-
for i in range(1): # Loop is redundant as it runs only once; consider removing if unnecessary
|
| 538 |
-
# Select the proofreading model based on model_kind
|
| 539 |
-
if model_kind == CHATGPT:
|
| 540 |
-
raw_text = chatGPT_proofread(normalized_input_text, normalize_output=IS_OUTPUT_NORMALIZATION)
|
| 541 |
-
elif model_kind == GEMINI:
|
| 542 |
-
raw_text = gemini_proofread(normalized_input_text, normalize_output=IS_OUTPUT_NORMALIZATION)
|
| 543 |
-
else:
|
| 544 |
-
raw_text = proofread_by_model_name(model_kind, normalized_input_text, normalize_output=IS_OUTPUT_NORMALIZATION)
|
| 545 |
-
|
| 546 |
-
# Extract the best candidate text based on similarity
|
| 547 |
-
result_text = extract_by_best_similarity(normalized_input_text, raw_text)
|
| 548 |
-
|
| 549 |
-
# Log the raw and result texts
|
| 550 |
-
print_and_log(f"RAW_{i} = {raw_text}")
|
| 551 |
-
print_and_log(f"RESULT_{i} = {result_text}")
|
| 552 |
-
|
| 553 |
-
# Normalize the result text
|
| 554 |
-
result_text = normalize_text(result_text)
|
| 555 |
-
|
| 556 |
-
# If a valid result is obtained, return it
|
| 557 |
-
if result_text != "":
|
| 558 |
-
return raw_text, result_text
|
| 559 |
-
|
| 560 |
-
# Return the raw and result texts
|
| 561 |
-
return raw_text, result_text
|
| 562 |
-
|
| 563 |
-
def generate_file_name(existing_data_file, existing_kinds, new_kinds):
|
| 564 |
-
"""
|
| 565 |
-
Generates a new file name based on the path of an existing data file and a combination of existing and new kinds.
|
| 566 |
-
|
| 567 |
-
Args:
|
| 568 |
-
existing_data_file (str): The path to the existing data file.
|
| 569 |
-
existing_kinds (list): A list of existing kinds.
|
| 570 |
-
new_kinds (list): A list of new kinds.
|
| 571 |
-
|
| 572 |
-
Returns:
|
| 573 |
-
str: The generated file name with the full path.
|
| 574 |
-
"""
|
| 575 |
-
|
| 576 |
-
# Combine existing and new kinds into a single list
|
| 577 |
-
combined_kinds = existing_kinds + new_kinds
|
| 578 |
-
|
| 579 |
-
# Get the directory path of the existing data file
|
| 580 |
-
directory_path = os.path.dirname(existing_data_file)
|
| 581 |
-
|
| 582 |
-
# Create a new file name by joining the kinds with underscores and adding a suffix
|
| 583 |
-
new_file_name = "_".join(combined_kinds) + "_with_best_similarity.csv"
|
| 584 |
-
|
| 585 |
-
# Combine the directory path with the new file name to get the full output file path
|
| 586 |
-
output_file_path = os.path.join(directory_path, new_file_name)
|
| 587 |
-
|
| 588 |
-
return output_file_path
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
def generate_new_data_with_best_similarity(existing_data_file, existing_kinds, new_kinds):
|
| 593 |
-
"""
|
| 594 |
-
Generates new data with the best similarity based on existing and new kinds, and writes the results to a CSV file.
|
| 595 |
-
|
| 596 |
-
Args:
|
| 597 |
-
existing_data_file (str): The path to the existing data file.
|
| 598 |
-
existing_kinds (list): A list of existing kinds.
|
| 599 |
-
new_kinds (list): A list of new kinds.
|
| 600 |
-
|
| 601 |
-
Returns:
|
| 602 |
-
None
|
| 603 |
-
"""
|
| 604 |
-
|
| 605 |
-
# Combine existing and new kinds into a single list
|
| 606 |
-
all_kinds = existing_kinds + new_kinds
|
| 607 |
-
|
| 608 |
-
# Generate column names for the CSV file
|
| 609 |
-
column_names = generate_column_names(all_kinds)
|
| 610 |
-
|
| 611 |
-
# Generate column names for existing kinds
|
| 612 |
-
existing_column_names = generate_column_names(existing_kinds)
|
| 613 |
-
|
| 614 |
-
# Generate the output file name
|
| 615 |
-
output_file = generate_file_name(existing_data_file, existing_kinds, new_kinds)
|
| 616 |
-
|
| 617 |
-
# Create the output file with column names if it doesn't exist
|
| 618 |
-
if not os.path.exists(output_file):
|
| 619 |
-
write_to_csv(output_file, column_names)
|
| 620 |
-
|
| 621 |
-
# Read existing data from the file
|
| 622 |
-
existing_data = {kind: get_column(existing_data_file, kind) for kind in existing_column_names}
|
| 623 |
-
|
| 624 |
-
# Read input data from the output file
|
| 625 |
-
input_data = read_csv_data(output_file)
|
| 626 |
-
start_index = len(input_data)
|
| 627 |
-
print(f"start_index = {start_index}")
|
| 628 |
-
|
| 629 |
-
num_rows = len(existing_data["human"])
|
| 630 |
-
global_generate_set = []
|
| 631 |
-
global_reuse = []
|
| 632 |
-
|
| 633 |
-
for index in range(start_index, num_rows):
|
| 634 |
-
# Initialize generation and reuse sets
|
| 635 |
-
generate_set = []
|
| 636 |
-
reuse_set = []
|
| 637 |
-
|
| 638 |
-
# Prepare the current generation dictionary
|
| 639 |
-
current_generation = {kind: existing_data[kind][index] for kind in existing_column_names}
|
| 640 |
-
print(f"current_generation before generation = {current_generation}")
|
| 641 |
-
|
| 642 |
-
human_text = current_generation["human"]
|
| 643 |
-
|
| 644 |
-
# Generate new kinds based on human text
|
| 645 |
-
for kind in new_kinds:
|
| 646 |
-
_, generated_text = proofread_with_best_similarity(human_text, kind)
|
| 647 |
-
current_generation[kind] = generated_text
|
| 648 |
-
generate_set.append(kind)
|
| 649 |
-
|
| 650 |
-
print(f"current_generation after generate one = {current_generation}")
|
| 651 |
-
|
| 652 |
-
# Generate combinations of kinds
|
| 653 |
-
for first_kind in all_kinds:
|
| 654 |
-
for second_kind in all_kinds:
|
| 655 |
-
combination_name = f"{first_kind}_{second_kind}"
|
| 656 |
-
|
| 657 |
-
if combination_name not in current_generation:
|
| 658 |
-
if first_kind in current_generation and current_generation[first_kind] == human_text:
|
| 659 |
-
generated_text = current_generation[second_kind]
|
| 660 |
-
reuse_set.append(f"{combination_name} from {second_kind}")
|
| 661 |
-
else:
|
| 662 |
-
is_need_generation = True
|
| 663 |
-
for first_kind_2 in all_kinds:
|
| 664 |
-
if first_kind != first_kind_2 and current_generation[first_kind] == current_generation[first_kind_2]:
|
| 665 |
-
combination_name_2 = f"{first_kind_2}_{second_kind}"
|
| 666 |
-
if combination_name_2 in current_generation:
|
| 667 |
-
generated_text = current_generation[combination_name_2]
|
| 668 |
-
reuse_set.append(f"{combination_name} from {combination_name_2}")
|
| 669 |
-
is_need_generation = False
|
| 670 |
-
break
|
| 671 |
-
if is_need_generation:
|
| 672 |
-
_, generated_text = proofread_with_best_similarity(current_generation[first_kind], second_kind)
|
| 673 |
-
generate_set.append(f"{first_kind}_{second_kind}")
|
| 674 |
-
|
| 675 |
-
current_generation[combination_name] = generated_text
|
| 676 |
-
|
| 677 |
-
# Write the current generation to the output file
|
| 678 |
-
write_new_data(output_file, current_generation, column_names)
|
| 679 |
-
|
| 680 |
-
# Update global sets
|
| 681 |
-
global_generate_set.append(generate_set)
|
| 682 |
-
global_reuse
|
| 683 |
-
|
| 684 |
-
def shuffle(array, seed):
|
| 685 |
-
"""
|
| 686 |
-
Shuffles the elements of each sublist in the given array using the specified seed.
|
| 687 |
-
|
| 688 |
-
Args:
|
| 689 |
-
array (list of lists): The array containing sublists to shuffle.
|
| 690 |
-
seed (int): The seed value for the random number generator.
|
| 691 |
-
|
| 692 |
-
Returns:
|
| 693 |
-
None
|
| 694 |
-
"""
|
| 695 |
-
for sublist in array:
|
| 696 |
-
random.Random(seed).shuffle(sublist)
|
| 697 |
-
|
| 698 |
-
def generate_human_with_shuffle(dataset_name, column_name, num_samples, output_file):
|
| 699 |
-
"""
|
| 700 |
-
Generates a shuffled list of sentences from the dataset and writes them to a CSV file.
|
| 701 |
-
|
| 702 |
-
Args:
|
| 703 |
-
dataset_name (str): The name of the dataset to load.
|
| 704 |
-
column_name (str): The column name to extract sentences from.
|
| 705 |
-
num_samples (int): The number of samples to process.
|
| 706 |
-
output_file (str): The path to the output CSV file.
|
| 707 |
-
|
| 708 |
-
Returns:
|
| 709 |
-
None
|
| 710 |
-
"""
|
| 711 |
-
# Load the dataset
|
| 712 |
-
dataset = load_dataset(dataset_name)
|
| 713 |
-
data = dataset['train']
|
| 714 |
-
|
| 715 |
-
lines = []
|
| 716 |
-
# Tokenize sentences and add to the lines list
|
| 717 |
-
for sample in data:
|
| 718 |
-
nltk_tokens = nltk.sent_tokenize(sample[column_name])
|
| 719 |
-
lines.extend(nltk_tokens)
|
| 720 |
-
|
| 721 |
-
# Filter out empty lines
|
| 722 |
-
filtered_lines = [line for line in lines if line != ""]
|
| 723 |
-
lines = filtered_lines
|
| 724 |
-
|
| 725 |
-
# Shuffle the lines
|
| 726 |
-
shuffle([lines], seed=SEED)
|
| 727 |
-
|
| 728 |
-
# Ensure the output file exists and write the header if it doesn't
|
| 729 |
-
if not os.path.exists(output_file):
|
| 730 |
-
header = ["human"]
|
| 731 |
-
write_to_csv(output_file, header)
|
| 732 |
-
|
| 733 |
-
# Get the number of lines already processed in the output file
|
| 734 |
-
number_of_processed_lines = number_of_csv_lines(output_file)
|
| 735 |
-
|
| 736 |
-
# Print the initial lines to be processed
|
| 737 |
-
print(f"Lines before processing: {lines[:num_samples]}")
|
| 738 |
-
|
| 739 |
-
# Slice the lines list to get the unprocessed lines
|
| 740 |
-
lines = lines[number_of_processed_lines:num_samples]
|
| 741 |
-
|
| 742 |
-
# Print the lines after slicing
|
| 743 |
-
print(f"Lines after slicing: {lines}")
|
| 744 |
-
|
| 745 |
-
# Process each line and write to the output file
|
| 746 |
-
for index, human in enumerate(lines):
|
| 747 |
-
normalized_text = normalize_text(human)
|
| 748 |
-
output_data = [normalized_text]
|
| 749 |
-
write_to_csv(output_file, output_data)
|
| 750 |
-
print(f"Processed {index + 1} / {len(lines)}; Total processed: {number_of_processed_lines + index + 1} / {num_samples}")
|
| 751 |
-
|
| 752 |
-
|
| 753 |
-
def split(data, ratio):
|
| 754 |
-
"""
|
| 755 |
-
Splits the data into training and testing sets based on the given ratio.
|
| 756 |
-
|
| 757 |
-
Args:
|
| 758 |
-
data (list): The dataset to split.
|
| 759 |
-
ratio (float): The ratio for splitting the data into training and testing sets.
|
| 760 |
-
|
| 761 |
-
Returns:
|
| 762 |
-
tuple: A tuple containing the training data and the testing data.
|
| 763 |
-
"""
|
| 764 |
-
train_size = int(len(data) * ratio)
|
| 765 |
-
train_data = data[:train_size]
|
| 766 |
-
test_data = data[train_size:]
|
| 767 |
-
return train_data, test_data
|
| 768 |
-
|
| 769 |
-
def bart_score_in_batch(text_1, text_2):
|
| 770 |
-
"""
|
| 771 |
-
Calculates the BART score for pairs of texts in batches.
|
| 772 |
-
|
| 773 |
-
Args:
|
| 774 |
-
text_1 (list of str): The first list of texts.
|
| 775 |
-
text_2 (list of str): The second list of texts.
|
| 776 |
-
|
| 777 |
-
Returns:
|
| 778 |
-
list: A list of BART scores for each pair of texts.
|
| 779 |
-
"""
|
| 780 |
-
return bart_scorer.score(text_1, text_2, batch_size=BATCH_SIZE)
|
| 781 |
-
|
| 782 |
-
def extract_feature_in_batch(text_1, text_2, feature_kind):
|
| 783 |
-
"""
|
| 784 |
-
Extracts features for pairs of texts using BART scores.
|
| 785 |
-
|
| 786 |
-
Args:
|
| 787 |
-
text_1 (list of str): The first list of texts.
|
| 788 |
-
text_2 (list of str): The second list of texts.
|
| 789 |
-
feature_kind (str): The type of feature to extract.
|
| 790 |
-
|
| 791 |
-
Returns:
|
| 792 |
-
list: A list of extracted features.
|
| 793 |
-
"""
|
| 794 |
-
features = bart_score_in_batch(text_1, text_2)
|
| 795 |
-
return features
|
| 796 |
-
|
| 797 |
-
def abstract_train(features, labels):
|
| 798 |
-
"""
|
| 799 |
-
Trains a model using the given features and labels.
|
| 800 |
-
|
| 801 |
-
Args:
|
| 802 |
-
features (list): The input features for training.
|
| 803 |
-
labels (list): The target labels for training.
|
| 804 |
-
|
| 805 |
-
Returns:
|
| 806 |
-
object: The trained model.
|
| 807 |
-
"""
|
| 808 |
-
model = MLPClassifier()
|
| 809 |
-
model.fit(features, labels)
|
| 810 |
-
return model
|
| 811 |
-
|
| 812 |
-
def evaluate_model(model, features, labels):
|
| 813 |
-
"""
|
| 814 |
-
Evaluates the model's performance using accuracy and ROC AUC scores.
|
| 815 |
-
|
| 816 |
-
Args:
|
| 817 |
-
model (object): The trained model to evaluate.
|
| 818 |
-
features (list): The input features for evaluation.
|
| 819 |
-
labels (list): The target labels for evaluation.
|
| 820 |
-
|
| 821 |
-
Returns:
|
| 822 |
-
None
|
| 823 |
-
"""
|
| 824 |
-
predictions = model.predict(features)
|
| 825 |
-
rounded_predictions = [round(value) for value in predictions]
|
| 826 |
-
|
| 827 |
-
accuracy = accuracy_score(labels, rounded_predictions)
|
| 828 |
-
write_to_file(OUTPUT_FILE, f"Accuracy: {accuracy * 100.0:.1f}%\n")
|
| 829 |
-
|
| 830 |
-
roc_auc = roc_auc_score(labels, rounded_predictions)
|
| 831 |
-
write_to_file(OUTPUT_FILE, f"ROC AUC: {roc_auc * 100.0:.1f}%\n")
|
| 832 |
-
|
| 833 |
-
def combine_text_with_BERT_format(text_list):
|
| 834 |
-
"""
|
| 835 |
-
Combines a list of texts into a single string formatted for BERT input.
|
| 836 |
-
|
| 837 |
-
Args:
|
| 838 |
-
text_list (list of str): The list of texts to combine.
|
| 839 |
-
|
| 840 |
-
Returns:
|
| 841 |
-
str: The combined text string formatted for BERT input.
|
| 842 |
-
"""
|
| 843 |
-
combined_text = f"<s>{text_list[0]}</s>"
|
| 844 |
-
for i in range(1, len(text_list)):
|
| 845 |
-
combined_text += f"</s>{text_list[i]}</s>"
|
| 846 |
-
return combined_text
|
| 847 |
-
|
| 848 |
-
|
| 849 |
-
def preprocess_function_multimodel(sample):
|
| 850 |
-
"""
|
| 851 |
-
Preprocesses a given sample for a multi-model setup by calculating BART scores
|
| 852 |
-
and formatting the text for BERT input.
|
| 853 |
-
|
| 854 |
-
Args:
|
| 855 |
-
sample (dict): A dictionary containing a key "text", which is a list of lists of strings.
|
| 856 |
-
|
| 857 |
-
Returns:
|
| 858 |
-
dict: A dictionary containing tokenized and preprocessed text data.
|
| 859 |
-
"""
|
| 860 |
-
num_texts = len(sample["text"][0]) # Number of texts in each sub-sample
|
| 861 |
-
texts_grouped_by_index = [[] for _ in range(num_texts)] # Initialize empty lists for grouping texts by index
|
| 862 |
-
|
| 863 |
-
# Group texts by their index across sub-samples
|
| 864 |
-
for sub_sample in sample["text"]:
|
| 865 |
-
for i in range(num_texts):
|
| 866 |
-
texts_grouped_by_index[i].append(sub_sample[i])
|
| 867 |
-
|
| 868 |
-
# Calculate BART scores for each text pair (text[0] with text[i])
|
| 869 |
-
bart_scores = [bart_score_in_batch(texts_grouped_by_index[0], texts_grouped_by_index[i]) for i in range(1, num_texts)]
|
| 870 |
-
|
| 871 |
-
combined_texts = []
|
| 872 |
-
|
| 873 |
-
# Process each sub-sample for BERT input
|
| 874 |
-
for index, sub_sample in enumerate(sample["text"]):
|
| 875 |
-
text_array = [sub_sample[0]] # Start with the input text
|
| 876 |
-
score_generation_pairs = []
|
| 877 |
-
|
| 878 |
-
# Pair scores with their corresponding generations
|
| 879 |
-
for i in range(1, num_texts):
|
| 880 |
-
generation_text = sub_sample[i]
|
| 881 |
-
generation_score = bart_scores[i-1][index]
|
| 882 |
-
score_generation_pairs.append((generation_score, generation_text))
|
| 883 |
-
|
| 884 |
-
# Sort pairs by score in descending order
|
| 885 |
-
sorted_pairs = sorted(score_generation_pairs, reverse=True)
|
| 886 |
-
|
| 887 |
-
# Append sorted texts to text_array
|
| 888 |
-
for _, sorted_text in sorted_pairs:
|
| 889 |
-
text_array.append(sorted_text)
|
| 890 |
-
|
| 891 |
-
# Combine texts into a single BERT-formatted string
|
| 892 |
-
combined_text = combine_text_with_BERT_format(text_array)
|
| 893 |
-
combined_texts.append(combined_text)
|
| 894 |
-
|
| 895 |
-
# Tokenize the combined texts for BERT
|
| 896 |
-
return tokenizer(combined_texts, add_special_tokens=False, truncation=True)
|
| 897 |
-
|
| 898 |
-
def preprocess_function_single_from_multimodel(sample):
|
| 899 |
-
"""
|
| 900 |
-
Extracts the first text from each sub-sample in a multi-model sample and tokenizes it.
|
| 901 |
-
|
| 902 |
-
Args:
|
| 903 |
-
sample (dict): A dictionary containing a key "text", which is a list of lists of strings.
|
| 904 |
-
|
| 905 |
-
Returns:
|
| 906 |
-
dict: A dictionary containing tokenized text data.
|
| 907 |
-
"""
|
| 908 |
-
combined_texts = []
|
| 909 |
-
|
| 910 |
-
# Iterate through each sub-sample
|
| 911 |
-
for sub_sample in sample["text"]:
|
| 912 |
-
input_text = sub_sample[0] # Extract the first text from the sub-sample
|
| 913 |
-
combined_texts.append(input_text) # Append it to the list of combined texts
|
| 914 |
-
|
| 915 |
-
# Tokenize the combined texts
|
| 916 |
-
return tokenizer(combined_texts, truncation=True)
|
| 917 |
-
|
| 918 |
-
|
| 919 |
-
def check_api_error(data):
|
| 920 |
-
"""
|
| 921 |
-
Checks if any item in the provided data indicates an API error.
|
| 922 |
-
|
| 923 |
-
Args:
|
| 924 |
-
data (list): A list of items to be checked for API errors.
|
| 925 |
-
|
| 926 |
-
Returns:
|
| 927 |
-
bool: True if an API error or ignore by API error is found, otherwise False.
|
| 928 |
-
"""
|
| 929 |
-
for item in data:
|
| 930 |
-
if item == API_ERROR or item == IGNORE_BY_API_ERROR: # Check for API error indicators
|
| 931 |
-
return True # Return True if an error indicator is found
|
| 932 |
-
return False # Return False if no error indicators are found
|
| 933 |
-
|
| 934 |
-
|
| 935 |
-
def train_only_by_transformer_with_test_evaluation_early_stop(train_data, test_data, input_type, num_classes=2):
|
| 936 |
-
"""
|
| 937 |
-
Trains a transformer model using the provided training and testing datasets with early stopping.
|
| 938 |
-
|
| 939 |
-
Args:
|
| 940 |
-
train_data (Dataset): The training dataset.
|
| 941 |
-
test_data (Dataset): The testing dataset.
|
| 942 |
-
input_type (str): The type of input data, either MULTIMODEL or SINGLE_FROM_MULTIMODEL.
|
| 943 |
-
num_classes (int, optional): The number of classes for classification. Defaults to 2.
|
| 944 |
-
|
| 945 |
-
Returns:
|
| 946 |
-
Trainer: The trained model wrapped in a Trainer object.
|
| 947 |
-
"""
|
| 948 |
-
# Preprocess datasets based on the input type
|
| 949 |
-
if input_type == MULTIMODEL:
|
| 950 |
-
train_data = train_data.map(preprocess_function_multimodel, batched=True)
|
| 951 |
-
test_data = test_data.map(preprocess_function_multimodel, batched=True)
|
| 952 |
-
elif input_type == SINGLE_FROM_MULTIMODEL:
|
| 953 |
-
train_data = train_data.map(preprocess_function_single_from_multimodel, batched=True)
|
| 954 |
-
test_data = test_data.map(preprocess_function_single_from_multimodel, batched=True)
|
| 955 |
-
|
| 956 |
-
# Data collator to pad inputs
|
| 957 |
-
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
| 958 |
-
|
| 959 |
-
# Load appropriate model based on number of classes
|
| 960 |
-
if num_classes == 3:
|
| 961 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
| 962 |
-
"pretrained_model/roberta-base_num_labels_3", num_labels=num_classes)
|
| 963 |
-
else:
|
| 964 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
| 965 |
-
ROBERTA_MODEL_PATHS[MODEL_NAME], num_labels=num_classes)
|
| 966 |
-
|
| 967 |
-
learning_rate = LEARNING_RATES[MODEL_NAME]
|
| 968 |
-
output_folder = "training_with_callbacks"
|
| 969 |
-
|
| 970 |
-
# Remove the output folder if it already exists
|
| 971 |
-
if os.path.exists(output_folder):
|
| 972 |
-
shutil.rmtree(output_folder)
|
| 973 |
-
|
| 974 |
-
# Training arguments
|
| 975 |
-
training_args = TrainingArguments(
|
| 976 |
-
output_dir=output_folder,
|
| 977 |
-
evaluation_strategy="epoch",
|
| 978 |
-
logging_strategy="epoch",
|
| 979 |
-
save_strategy="epoch",
|
| 980 |
-
learning_rate=learning_rate,
|
| 981 |
-
per_device_train_batch_size=BATCH_SIZE,
|
| 982 |
-
per_device_eval_batch_size=BATCH_SIZE,
|
| 983 |
-
num_train_epochs=NUMBER_OF_MAX_EPOCH_WITH_EARLY_STOPPING,
|
| 984 |
-
weight_decay=0.01,
|
| 985 |
-
push_to_hub=False,
|
| 986 |
-
metric_for_best_model=OPTIMIZED_METRIC,
|
| 987 |
-
load_best_model_at_end=True
|
| 988 |
-
)
|
| 989 |
-
|
| 990 |
-
# Create Trainer object
|
| 991 |
-
trainer = Trainer(
|
| 992 |
-
model=model,
|
| 993 |
-
args=training_args,
|
| 994 |
-
train_dataset=train_data,
|
| 995 |
-
eval_dataset=test_data,
|
| 996 |
-
tokenizer=tokenizer,
|
| 997 |
-
data_collator=data_collator,
|
| 998 |
-
compute_metrics=compute_metrics,
|
| 999 |
-
callbacks=[EarlyStoppingCallback(early_stopping_patience=PATIENCE)]
|
| 1000 |
-
)
|
| 1001 |
-
|
| 1002 |
-
# Add custom callback
|
| 1003 |
-
trainer.add_callback(CustomCallback(trainer))
|
| 1004 |
-
|
| 1005 |
-
# Start training
|
| 1006 |
-
trainer.train()
|
| 1007 |
-
|
| 1008 |
-
return trainer
|
| 1009 |
-
|
| 1010 |
-
|
| 1011 |
-
def calculate_number_of_models(num_columns):
|
| 1012 |
-
"""
|
| 1013 |
-
Calculates the number of models required based on the number of columns.
|
| 1014 |
-
|
| 1015 |
-
Args:
|
| 1016 |
-
num_columns (int): The total number of columns.
|
| 1017 |
-
|
| 1018 |
-
Returns:
|
| 1019 |
-
int: The number of models required.
|
| 1020 |
-
|
| 1021 |
-
Raises:
|
| 1022 |
-
Exception: If the number of models cannot be calculated to match the number of columns.
|
| 1023 |
-
"""
|
| 1024 |
-
num_models = 0
|
| 1025 |
-
count_human = 1 # Initial count representing human input
|
| 1026 |
-
|
| 1027 |
-
while True:
|
| 1028 |
-
count_single = num_models # Single model count
|
| 1029 |
-
count_pair = num_models * num_models # Pair model count
|
| 1030 |
-
|
| 1031 |
-
total_count = count_human + count_single + count_pair
|
| 1032 |
-
|
| 1033 |
-
if total_count == num_columns:
|
| 1034 |
-
return num_models
|
| 1035 |
-
elif total_count > num_columns:
|
| 1036 |
-
raise Exception("Cannot calculate the number of models to match the number of columns")
|
| 1037 |
-
|
| 1038 |
-
num_models += 1
|
| 1039 |
-
|
| 1040 |
-
|
| 1041 |
-
def read_multimodel_data_from_csv(multimodel_csv_file):
|
| 1042 |
-
"""
|
| 1043 |
-
Reads multimodel data from a CSV file and organizes it into a structured format.
|
| 1044 |
-
|
| 1045 |
-
Args:
|
| 1046 |
-
multimodel_csv_file (str): Path to the CSV file containing multimodel data.
|
| 1047 |
-
|
| 1048 |
-
Returns:
|
| 1049 |
-
list: A list of dictionaries, each containing 'human', 'single', and 'pair' data.
|
| 1050 |
-
|
| 1051 |
-
Raises:
|
| 1052 |
-
Exception: If there is an error in reading the CSV file or processing the data.
|
| 1053 |
-
"""
|
| 1054 |
-
# Read CSV data into a list of lists
|
| 1055 |
-
input_data = read_csv_data(multimodel_csv_file)
|
| 1056 |
-
|
| 1057 |
-
# Initialize the result list
|
| 1058 |
-
structured_data = []
|
| 1059 |
-
|
| 1060 |
-
# Calculate the number of models based on the number of columns in the first row
|
| 1061 |
-
num_models = calculate_number_of_models(len(input_data[0]))
|
| 1062 |
-
|
| 1063 |
-
# Process each row in the input data
|
| 1064 |
-
for row in input_data:
|
| 1065 |
-
row_data = {}
|
| 1066 |
-
index = 0
|
| 1067 |
-
|
| 1068 |
-
# Extract human data
|
| 1069 |
-
row_data["human"] = row[index]
|
| 1070 |
-
index += 1
|
| 1071 |
-
|
| 1072 |
-
# Extract single model data
|
| 1073 |
-
single_model_data = []
|
| 1074 |
-
for _ in range(num_models):
|
| 1075 |
-
single_model_data.append(row[index])
|
| 1076 |
-
index += 1
|
| 1077 |
-
row_data["single"] = single_model_data
|
| 1078 |
-
|
| 1079 |
-
# Extract pair model data
|
| 1080 |
-
pair_model_data = []
|
| 1081 |
-
for _ in range(num_models):
|
| 1082 |
-
sub_pair_data = []
|
| 1083 |
-
for _ in range(num_models):
|
| 1084 |
-
sub_pair_data.append(row[index])
|
| 1085 |
-
index += 1
|
| 1086 |
-
pair_model_data.append(sub_pair_data)
|
| 1087 |
-
row_data["pair"] = pair_model_data
|
| 1088 |
-
|
| 1089 |
-
# Append the structured row data to the result list
|
| 1090 |
-
structured_data.append(row_data)
|
| 1091 |
-
|
| 1092 |
-
return structured_data
|
| 1093 |
-
|
| 1094 |
-
|
| 1095 |
-
def check_error(data_item):
|
| 1096 |
-
"""
|
| 1097 |
-
Checks for errors in a data item by verifying the 'human', 'single', and 'pair' fields.
|
| 1098 |
-
|
| 1099 |
-
Args:
|
| 1100 |
-
data_item (dict): A dictionary containing 'human', 'single', and 'pair' data.
|
| 1101 |
-
|
| 1102 |
-
Returns:
|
| 1103 |
-
bool: True if any of the fields contain an error, otherwise False.
|
| 1104 |
-
"""
|
| 1105 |
-
# Check for API error in the 'human' field
|
| 1106 |
-
if check_api_error(data_item["human"]):
|
| 1107 |
-
return True
|
| 1108 |
-
|
| 1109 |
-
# Check for API error in the 'single' model data
|
| 1110 |
-
for single_text in data_item["single"]:
|
| 1111 |
-
if check_api_error(single_text):
|
| 1112 |
-
return True
|
| 1113 |
-
|
| 1114 |
-
# Get the number of models from the 'single' model data
|
| 1115 |
-
num_models = len(data_item["single"])
|
| 1116 |
-
|
| 1117 |
-
# Check for API error in the 'pair' model data
|
| 1118 |
-
for i in range(num_models):
|
| 1119 |
-
for j in range(num_models):
|
| 1120 |
-
if check_api_error(data_item["pair"][i][j]):
|
| 1121 |
-
return True
|
| 1122 |
-
|
| 1123 |
-
# No errors found
|
| 1124 |
-
return False
|
| 1125 |
-
|
| 1126 |
-
|
| 1127 |
-
|
| 1128 |
-
def create_pair_sample(data_item, training_indices):
|
| 1129 |
-
"""
|
| 1130 |
-
Creates pair samples for training by comparing human data with machine-generated data.
|
| 1131 |
-
|
| 1132 |
-
Args:
|
| 1133 |
-
data_item (dict): A dictionary containing 'human', 'single', and 'pair' data.
|
| 1134 |
-
training_indices (list): A list of indices used for training.
|
| 1135 |
-
|
| 1136 |
-
Returns:
|
| 1137 |
-
list: A list of dictionaries, each containing a 'text' array and a 'label'.
|
| 1138 |
-
"""
|
| 1139 |
-
# Initialize the result list
|
| 1140 |
-
result_samples = []
|
| 1141 |
-
|
| 1142 |
-
# Check if there is any error in the data_item
|
| 1143 |
-
if check_error(data_item):
|
| 1144 |
-
return result_samples
|
| 1145 |
-
|
| 1146 |
-
print(training_indices)
|
| 1147 |
-
print(data_item)
|
| 1148 |
-
# Create machine samples
|
| 1149 |
-
for train_idx in training_indices:
|
| 1150 |
-
if data_item["human"] != data_item["single"][train_idx]:
|
| 1151 |
-
text_array = []
|
| 1152 |
-
machine_text = data_item["single"][train_idx]
|
| 1153 |
-
text_array.append(machine_text)
|
| 1154 |
-
|
| 1155 |
-
for sub_idx in training_indices:
|
| 1156 |
-
text_array.append(data_item["pair"][train_idx][sub_idx])
|
| 1157 |
-
|
| 1158 |
-
sample = {
|
| 1159 |
-
"text": text_array,
|
| 1160 |
-
"label": MACHINE_LABEL
|
| 1161 |
-
}
|
| 1162 |
-
result_samples.append(sample)
|
| 1163 |
-
|
| 1164 |
-
# Create human samples
|
| 1165 |
-
text_array = [data_item["human"]]
|
| 1166 |
-
|
| 1167 |
-
for train_idx in training_indices:
|
| 1168 |
-
text_array.append(data_item["single"][train_idx])
|
| 1169 |
-
|
| 1170 |
-
human_sample = {
|
| 1171 |
-
"text": text_array,
|
| 1172 |
-
"label": HUMAN_LABEL
|
| 1173 |
-
}
|
| 1174 |
-
|
| 1175 |
-
# Append human samples for each machine sample
|
| 1176 |
-
num_machine_samples = len(result_samples)
|
| 1177 |
-
for _ in range(num_machine_samples):
|
| 1178 |
-
result_samples.append(human_sample)
|
| 1179 |
-
|
| 1180 |
-
return result_samples
|
| 1181 |
-
|
| 1182 |
-
|
| 1183 |
-
def create_pair_test_sample(data_item, training_indices, testing_indices):
|
| 1184 |
-
"""
|
| 1185 |
-
Creates pair test samples by comparing human data with machine-generated data.
|
| 1186 |
-
|
| 1187 |
-
Args:
|
| 1188 |
-
data_item (dict): A dictionary containing 'human', 'single', and 'pair' data.
|
| 1189 |
-
training_indices (list): A list of indices used for training.
|
| 1190 |
-
testing_indices (list): A list of indices used for testing.
|
| 1191 |
-
|
| 1192 |
-
Returns:
|
| 1193 |
-
list: A list of dictionaries, each containing a 'text' array and a 'label'.
|
| 1194 |
-
"""
|
| 1195 |
-
# Initialize the result list
|
| 1196 |
-
result_samples = []
|
| 1197 |
-
|
| 1198 |
-
# Check if there is any error in the data_item
|
| 1199 |
-
if check_error(data_item):
|
| 1200 |
-
return result_samples
|
| 1201 |
-
|
| 1202 |
-
# Create machine samples based on testing indices
|
| 1203 |
-
for test_idx in testing_indices:
|
| 1204 |
-
if data_item["human"] != data_item["single"][test_idx]:
|
| 1205 |
-
text_array = []
|
| 1206 |
-
machine_text = data_item["single"][test_idx]
|
| 1207 |
-
text_array.append(machine_text)
|
| 1208 |
-
|
| 1209 |
-
for train_idx in training_indices:
|
| 1210 |
-
text_array.append(data_item["pair"][test_idx][train_idx])
|
| 1211 |
-
|
| 1212 |
-
sample = {
|
| 1213 |
-
"text": text_array,
|
| 1214 |
-
"label": MACHINE_LABEL
|
| 1215 |
-
}
|
| 1216 |
-
result_samples.append(sample)
|
| 1217 |
-
|
| 1218 |
-
# Create human sample
|
| 1219 |
-
text_array = [data_item["human"]]
|
| 1220 |
-
|
| 1221 |
-
for train_idx in training_indices:
|
| 1222 |
-
text_array.append(data_item["single"][train_idx])
|
| 1223 |
-
|
| 1224 |
-
human_sample = {
|
| 1225 |
-
"text": text_array,
|
| 1226 |
-
"label": HUMAN_LABEL
|
| 1227 |
-
}
|
| 1228 |
-
|
| 1229 |
-
# Append the human sample for each machine sample
|
| 1230 |
-
num_machine_samples = len(result_samples)
|
| 1231 |
-
for _ in range(num_machine_samples):
|
| 1232 |
-
result_samples.append(human_sample)
|
| 1233 |
-
|
| 1234 |
-
return result_samples
|
| 1235 |
-
|
| 1236 |
-
|
| 1237 |
-
|
| 1238 |
-
def create_train_val_sample(data, training_indices):
|
| 1239 |
-
"""
|
| 1240 |
-
Creates training and validation samples from the provided data.
|
| 1241 |
-
|
| 1242 |
-
Args:
|
| 1243 |
-
data (list): A list of data items, each to be processed.
|
| 1244 |
-
training_indices (list): A list of indices used for training.
|
| 1245 |
-
|
| 1246 |
-
Returns:
|
| 1247 |
-
list: A list of training and validation samples created from the data.
|
| 1248 |
-
"""
|
| 1249 |
-
# Initialize the result list
|
| 1250 |
-
result_samples = []
|
| 1251 |
-
|
| 1252 |
-
# Process each item in the data
|
| 1253 |
-
for data_item in data:
|
| 1254 |
-
# Create pair samples for the current item
|
| 1255 |
-
sub_samples = create_pair_sample(data_item, training_indices)
|
| 1256 |
-
|
| 1257 |
-
# Extend the result list with the created sub-samples
|
| 1258 |
-
result_samples.extend(sub_samples)
|
| 1259 |
-
|
| 1260 |
-
return result_samples
|
| 1261 |
-
|
| 1262 |
-
|
| 1263 |
-
def create_test_sample(data, training_indices, testing_indices):
|
| 1264 |
-
"""
|
| 1265 |
-
Creates test samples from the provided data by comparing human data with machine-generated data.
|
| 1266 |
-
|
| 1267 |
-
Args:
|
| 1268 |
-
data (list): A list of data items, each to be processed.
|
| 1269 |
-
training_indices (list): A list of indices used for training.
|
| 1270 |
-
testing_indices (list): A list of indices used for testing.
|
| 1271 |
-
|
| 1272 |
-
Returns:
|
| 1273 |
-
list: A list of test samples created from the data.
|
| 1274 |
-
"""
|
| 1275 |
-
# Initialize the result list
|
| 1276 |
-
result_samples = []
|
| 1277 |
-
|
| 1278 |
-
# Process each item in the data
|
| 1279 |
-
for data_item in data:
|
| 1280 |
-
# Create pair test samples for the current item
|
| 1281 |
-
sub_samples = create_pair_test_sample(data_item, training_indices, testing_indices)
|
| 1282 |
-
|
| 1283 |
-
# Extend the result list with the created sub-samples
|
| 1284 |
-
result_samples.extend(sub_samples)
|
| 1285 |
-
|
| 1286 |
-
return result_samples
|
| 1287 |
-
|
| 1288 |
-
|
| 1289 |
-
def distribute_data(data, train_indices, test_indices, train_ratio, val_ratio):
|
| 1290 |
-
"""
|
| 1291 |
-
Distributes the data into training, validation, and test samples.
|
| 1292 |
-
|
| 1293 |
-
Args:
|
| 1294 |
-
data (list): A list of data items to be split and processed.
|
| 1295 |
-
train_indices (list): A list of indices used for training.
|
| 1296 |
-
test_indices (list): A list of indices used for testing.
|
| 1297 |
-
train_ratio (float): The ratio of data to be used for training.
|
| 1298 |
-
val_ratio (float): The ratio of data to be used for validation.
|
| 1299 |
-
|
| 1300 |
-
Returns:
|
| 1301 |
-
tuple: A tuple containing lists of training, validation, and test samples.
|
| 1302 |
-
"""
|
| 1303 |
-
# Split the data into training, validation, and test sets
|
| 1304 |
-
train_data, val_data, test_data = split_train_val_test(data, train_ratio, val_ratio)
|
| 1305 |
-
|
| 1306 |
-
# Create training samples
|
| 1307 |
-
train_samples = create_train_val_sample(train_data, train_indices)
|
| 1308 |
-
write_to_file(OUTPUT_FILE, f"train samples = {len(train_samples)}\n")
|
| 1309 |
-
|
| 1310 |
-
# Create validation samples
|
| 1311 |
-
val_samples = create_train_val_sample(val_data, train_indices)
|
| 1312 |
-
write_to_file(OUTPUT_FILE, f"val samples = {len(val_samples)}\n")
|
| 1313 |
-
|
| 1314 |
-
# Create test samples
|
| 1315 |
-
test_samples = create_test_sample(test_data, train_indices, test_indices)
|
| 1316 |
-
write_to_file(OUTPUT_FILE, f"test samples = {len(test_samples)}\n")
|
| 1317 |
-
|
| 1318 |
-
return train_samples, val_samples, test_samples
|
| 1319 |
-
|
| 1320 |
-
|
| 1321 |
-
def convert_to_huggingface_with_multimodel(samples):
|
| 1322 |
-
"""
|
| 1323 |
-
Converts a list of samples to the Hugging Face Dataset format.
|
| 1324 |
-
|
| 1325 |
-
Args:
|
| 1326 |
-
samples (list): A list of samples to be converted.
|
| 1327 |
-
|
| 1328 |
-
Returns:
|
| 1329 |
-
Dataset: A Hugging Face Dataset object created from the samples.
|
| 1330 |
-
"""
|
| 1331 |
-
return Dataset.from_list(samples)
|
| 1332 |
-
|
| 1333 |
-
|
| 1334 |
-
|
| 1335 |
-
def train_by_transformer_with_multimodel_and_early_stop(train_samples, val_samples, input_type):
|
| 1336 |
-
"""
|
| 1337 |
-
Trains a transformer model with multimodal data and early stopping.
|
| 1338 |
-
|
| 1339 |
-
Args:
|
| 1340 |
-
train_samples (list): A list of training samples.
|
| 1341 |
-
val_samples (list): A list of validation samples.
|
| 1342 |
-
input_type (str): The type of input data (e.g., multimodal).
|
| 1343 |
-
|
| 1344 |
-
Returns:
|
| 1345 |
-
object: The trained model with early stopping.
|
| 1346 |
-
"""
|
| 1347 |
-
# Convert training and validation samples to Hugging Face Dataset format
|
| 1348 |
-
train_data = convert_to_huggingface_with_multimodel(train_samples)
|
| 1349 |
-
val_data = convert_to_huggingface_with_multimodel(val_samples)
|
| 1350 |
-
|
| 1351 |
-
# Train the model with early stopping and return the trained model
|
| 1352 |
-
return train_only_by_transformer_with_test_evaluation_early_stop(train_data, val_data, input_type)
|
| 1353 |
-
|
| 1354 |
-
|
| 1355 |
-
def test_by_transformer_with_multimodel(detector, test_samples, input_type):
|
| 1356 |
-
"""
|
| 1357 |
-
Tests a trained transformer model with multimodal data.
|
| 1358 |
-
|
| 1359 |
-
Args:
|
| 1360 |
-
detector (object): The trained model to be evaluated.
|
| 1361 |
-
test_samples (list): A list of test samples.
|
| 1362 |
-
input_type (str): The type of input data (e.g., multimodal).
|
| 1363 |
-
|
| 1364 |
-
Returns:
|
| 1365 |
-
None
|
| 1366 |
-
"""
|
| 1367 |
-
# Convert test samples to Hugging Face Dataset format
|
| 1368 |
-
test_data = convert_to_huggingface_with_multimodel(test_samples)
|
| 1369 |
-
|
| 1370 |
-
# Apply the appropriate preprocessing function based on the input type
|
| 1371 |
-
if input_type == MULTIMODEL:
|
| 1372 |
-
test_data = test_data.map(preprocess_function_multimodel, batched=True)
|
| 1373 |
-
elif input_type == SINGLE_FROM_MULTIMODEL:
|
| 1374 |
-
test_data = test_data.map(preprocess_function_single_from_multimodel, batched=True)
|
| 1375 |
-
|
| 1376 |
-
print("Test data:", test_data)
|
| 1377 |
-
# Evaluate the model on the test data
|
| 1378 |
-
result = detector.evaluate(eval_dataset=test_data)
|
| 1379 |
-
print("Test result:", result)
|
| 1380 |
-
|
| 1381 |
-
# Extract and log the ROC AUC score
|
| 1382 |
-
roc_auc = result['eval_roc_auc']
|
| 1383 |
-
write_to_file(OUTPUT_FILE, "roc_auc: %.1f%%" % (roc_auc * 100.0) + "\n")
|
| 1384 |
-
|
| 1385 |
-
|
| 1386 |
-
|
| 1387 |
-
def extract_by_feature_kind(samples, feature_type):
|
| 1388 |
-
"""
|
| 1389 |
-
Extracts features from the given samples based on the specified feature type.
|
| 1390 |
-
|
| 1391 |
-
Args:
|
| 1392 |
-
samples (list): A list of samples where each sample is a dictionary with 'text' and 'label' keys.
|
| 1393 |
-
feature_type (str): The type of feature to extract.
|
| 1394 |
-
|
| 1395 |
-
Returns:
|
| 1396 |
-
tuple: A tuple containing the extracted features and corresponding labels.
|
| 1397 |
-
"""
|
| 1398 |
-
text_1_list = []
|
| 1399 |
-
text_2_list = []
|
| 1400 |
-
labels = []
|
| 1401 |
-
|
| 1402 |
-
for sample in samples:
|
| 1403 |
-
text_1_list.append(sample["text"][0])
|
| 1404 |
-
text_2_list.append(sample["text"][1])
|
| 1405 |
-
labels.append(sample["label"])
|
| 1406 |
-
|
| 1407 |
-
# Extract features in batch based on the feature type
|
| 1408 |
-
features = extract_feature_in_batch(text_1_list, text_2_list, feature_type)
|
| 1409 |
-
|
| 1410 |
-
return features, labels
|
| 1411 |
-
|
| 1412 |
-
|
| 1413 |
-
def train_by_feature_kind(train_samples, feature_type):
|
| 1414 |
-
"""
|
| 1415 |
-
Trains a model using features extracted from the training samples based on the specified feature type.
|
| 1416 |
-
|
| 1417 |
-
Args:
|
| 1418 |
-
train_samples (list): A list of training samples where each sample is a dictionary with 'text' and 'label' keys.
|
| 1419 |
-
feature_type (str): The type of feature to extract for training.
|
| 1420 |
-
|
| 1421 |
-
Returns:
|
| 1422 |
-
object: The trained model.
|
| 1423 |
-
"""
|
| 1424 |
-
# Extract features and labels from the training samples
|
| 1425 |
-
features, labels = extract_by_feature_kind(train_samples, feature_type)
|
| 1426 |
-
|
| 1427 |
-
# Convert features to a numpy array and reshape for training
|
| 1428 |
-
features = np.array(features)
|
| 1429 |
-
features = features.reshape(-1, 1)
|
| 1430 |
-
|
| 1431 |
-
# Train the model using the extracted features and labels
|
| 1432 |
-
model = abstract_train(features, labels)
|
| 1433 |
-
|
| 1434 |
-
return model
|
| 1435 |
-
|
| 1436 |
-
|
| 1437 |
-
def test_by_feature_kind(detector, samples, feature_type):
|
| 1438 |
-
"""
|
| 1439 |
-
Tests a detector using features extracted from the provided samples based on the specified feature type.
|
| 1440 |
-
|
| 1441 |
-
Args:
|
| 1442 |
-
detector (object): The detector model to be evaluated.
|
| 1443 |
-
samples (list): A list of samples where each sample is a dictionary with 'text' and 'label' keys.
|
| 1444 |
-
feature_type (str): The type of feature to extract for testing.
|
| 1445 |
-
|
| 1446 |
-
Returns:
|
| 1447 |
-
None
|
| 1448 |
-
"""
|
| 1449 |
-
# Extract features and labels from the samples
|
| 1450 |
-
features, labels = extract_by_feature_kind(samples, feature_type)
|
| 1451 |
-
|
| 1452 |
-
# Convert features to a numpy array and reshape for evaluation
|
| 1453 |
-
features = np.array(features)
|
| 1454 |
-
features = features.reshape(-1, 1)
|
| 1455 |
-
|
| 1456 |
-
# Evaluate the detector model using the extracted features and labels
|
| 1457 |
-
evaluate_model(detector, features, labels)
|
| 1458 |
-
|
| 1459 |
-
|
| 1460 |
-
def general_process_multimodels_train_val_test(train_samples, val_samples, test_samples):
|
| 1461 |
-
"""
|
| 1462 |
-
General process for training, validating, and testing models using multi-model and feature kind approaches.
|
| 1463 |
-
|
| 1464 |
-
Args:
|
| 1465 |
-
train_samples (list): Training samples.
|
| 1466 |
-
val_samples (list): Validation samples.
|
| 1467 |
-
test_samples (list): Test samples.
|
| 1468 |
-
|
| 1469 |
-
Returns:
|
| 1470 |
-
None
|
| 1471 |
-
"""
|
| 1472 |
-
# Multi-model approach
|
| 1473 |
-
input_kind = MULTIMODEL
|
| 1474 |
-
write_to_file(OUTPUT_FILE, f"\nInput kind = {input_kind} \n")
|
| 1475 |
-
|
| 1476 |
-
# Train detector using multi-model with early stopping
|
| 1477 |
-
detector = train_by_transformer_with_multimodel_and_early_stop(train_samples, val_samples, input_kind)
|
| 1478 |
-
detector.save_model("./models/multi_model_detector")
|
| 1479 |
-
|
| 1480 |
-
# Evaluate on train set
|
| 1481 |
-
write_to_file(OUTPUT_FILE, f"EVALUATE ON TRAIN SET \n")
|
| 1482 |
-
test_by_transformer_with_multimodel(detector, train_samples, input_kind)
|
| 1483 |
-
|
| 1484 |
-
# Evaluate on validation set
|
| 1485 |
-
write_to_file(OUTPUT_FILE, f"EVALUATE ON VALIDATION SET \n")
|
| 1486 |
-
test_by_transformer_with_multimodel(detector, val_samples, input_kind)
|
| 1487 |
-
|
| 1488 |
-
# Evaluate on test set
|
| 1489 |
-
write_to_file(OUTPUT_FILE, f"EVALUATE ON TEST SET \n")
|
| 1490 |
-
test_by_transformer_with_multimodel(detector, test_samples, input_kind)
|
| 1491 |
-
|
| 1492 |
-
# Single from multi-model approach
|
| 1493 |
-
input_kind = SINGLE_FROM_MULTIMODEL
|
| 1494 |
-
write_to_file(OUTPUT_FILE, f"\nInput kind = {input_kind} \n")
|
| 1495 |
-
|
| 1496 |
-
# Train detector using single from multi-model with early stopping
|
| 1497 |
-
detector = train_by_transformer_with_multimodel_and_early_stop(train_samples, val_samples, input_kind)
|
| 1498 |
-
detector.save_model("./models/single_model_detector_1")
|
| 1499 |
-
|
| 1500 |
-
# Evaluate on train set
|
| 1501 |
-
write_to_file(OUTPUT_FILE, f"EVALUATE ON TRAIN SET \n")
|
| 1502 |
-
test_by_transformer_with_multimodel(detector, train_samples, input_kind)
|
| 1503 |
-
|
| 1504 |
-
# Evaluate on validation set
|
| 1505 |
-
write_to_file(OUTPUT_FILE, f"EVALUATE ON VALIDATION SET \n")
|
| 1506 |
-
test_by_transformer_with_multimodel(detector, val_samples, input_kind)
|
| 1507 |
-
|
| 1508 |
-
# Evaluate on test set
|
| 1509 |
-
write_to_file(OUTPUT_FILE, f"EVALUATE ON TEST SET \n")
|
| 1510 |
-
test_by_transformer_with_multimodel(detector, test_samples, input_kind)
|
| 1511 |
-
|
| 1512 |
-
# Feature kind approach
|
| 1513 |
-
sample_length = len(train_samples[0]["text"])
|
| 1514 |
-
if sample_length == 2: # Check if the sample length is 2, indicating BART feature kind
|
| 1515 |
-
feature_kind = BART
|
| 1516 |
-
write_to_file(OUTPUT_FILE, f"\nFeature kind = {feature_kind} \n")
|
| 1517 |
-
|
| 1518 |
-
# Train detector using feature kind
|
| 1519 |
-
detector = train_by_feature_kind(train_samples, feature_kind)
|
| 1520 |
-
|
| 1521 |
-
# Evaluate on train set
|
| 1522 |
-
write_to_file(OUTPUT_FILE, f"EVALUATE ON TRAIN SET \n")
|
| 1523 |
-
test_by_feature_kind(detector, train_samples, feature_kind)
|
| 1524 |
-
|
| 1525 |
-
# Evaluate on validation set
|
| 1526 |
-
write_to_file(OUTPUT_FILE, f"EVALUATE ON VALIDATION SET \n")
|
| 1527 |
-
test_by_feature_kind(detector, val_samples, feature_kind)
|
| 1528 |
-
|
| 1529 |
-
# Evaluate on test set
|
| 1530 |
-
write_to_file(OUTPUT_FILE, f"EVALUATE ON TEST SET \n")
|
| 1531 |
-
test_by_feature_kind(detector, test_samples, feature_kind)
|
| 1532 |
-
|
| 1533 |
-
|
| 1534 |
-
def process_multi_models_with_validation(multimodel_csv_file, train_indices, test_indices, num_samples):
|
| 1535 |
-
"""
|
| 1536 |
-
Processes multi-model data with validation, training, and testing.
|
| 1537 |
-
|
| 1538 |
-
Args:
|
| 1539 |
-
multimodel_csv_file (str): Path to the CSV file containing multi-model data.
|
| 1540 |
-
train_indices (list): Indices for the training data.
|
| 1541 |
-
test_indices (list): Indices for the testing data.
|
| 1542 |
-
num_samples (int): Number of samples to process.
|
| 1543 |
-
|
| 1544 |
-
Returns:
|
| 1545 |
-
None
|
| 1546 |
-
"""
|
| 1547 |
-
# Log the details of the process
|
| 1548 |
-
write_to_file(OUTPUT_FILE, f"PROCESSING FILE={multimodel_csv_file} \n")
|
| 1549 |
-
write_to_file(OUTPUT_FILE, f"EXPERIMENT WITH {MODEL_NAME} model \n")
|
| 1550 |
-
write_to_file(OUTPUT_FILE, f"NUMBER OF MAX EPOCHS WITH EARLY STOPPING = {NUMBER_OF_MAX_EPOCH_WITH_EARLY_STOPPING} \n")
|
| 1551 |
-
write_to_file(OUTPUT_FILE, f"PATIENCE = {PATIENCE} \n")
|
| 1552 |
-
write_to_file(OUTPUT_FILE, f"OPTIMIZED METRIC = {OPTIMIZED_METRIC} \n")
|
| 1553 |
-
write_to_file(OUTPUT_FILE, f"BATCH SIZE = {BATCH_SIZE} \n")
|
| 1554 |
-
write_to_file(OUTPUT_FILE, f"Number of samples = {num_samples} \n")
|
| 1555 |
-
|
| 1556 |
-
# Read multi-model data from the CSV file
|
| 1557 |
-
data = read_multimodel_data_from_csv(multimodel_csv_file)
|
| 1558 |
-
|
| 1559 |
-
# Limit data to the specified number of samples
|
| 1560 |
-
data = data[:num_samples]
|
| 1561 |
-
|
| 1562 |
-
# Distribute data into training, validation, and testing sets
|
| 1563 |
-
train_samples, val_samples, test_samples = distribute_data(data, train_indices, test_indices, TRAIN_RATIO, VAL_RATIO)
|
| 1564 |
-
|
| 1565 |
-
# Log the training and testing indices
|
| 1566 |
-
write_to_file(OUTPUT_FILE, f"Multimodel training with train indices {train_indices}, test with test indices {test_indices} \n")
|
| 1567 |
-
|
| 1568 |
-
# Process the multi-models for training, validation, and testing
|
| 1569 |
-
general_process_multimodels_train_val_test(train_samples, val_samples, test_samples)
|
| 1570 |
-
|
| 1571 |
-
|
| 1572 |
-
|
| 1573 |
-
|
| 1574 |
-
def split_train_val_test(data, train_ratio, val_ratio):
|
| 1575 |
-
"""
|
| 1576 |
-
Splits the dataset into training, validation, and test sets based on specified ratios.
|
| 1577 |
-
|
| 1578 |
-
Args:
|
| 1579 |
-
data (list): The dataset to be split.
|
| 1580 |
-
train_ratio (float): The ratio of the dataset to be used for training.
|
| 1581 |
-
val_ratio (float): The ratio of the dataset to be used for validation.
|
| 1582 |
-
|
| 1583 |
-
Returns:
|
| 1584 |
-
tuple: A tuple containing three lists - (train_data, val_data, test_data).
|
| 1585 |
-
"""
|
| 1586 |
-
# Calculate the number of samples for the training set
|
| 1587 |
-
num_train_samples = int(len(data) * train_ratio)
|
| 1588 |
-
|
| 1589 |
-
# Calculate the number of samples for the validation set
|
| 1590 |
-
num_val_samples = int(len(data) * val_ratio)
|
| 1591 |
-
|
| 1592 |
-
# Split the data into training, validation, and test sets
|
| 1593 |
-
train_data = data[:num_train_samples]
|
| 1594 |
-
val_data = data[num_train_samples:(num_train_samples + num_val_samples)]
|
| 1595 |
-
test_data = data[(num_train_samples + num_val_samples):]
|
| 1596 |
-
|
| 1597 |
-
return train_data, val_data, test_data
|
| 1598 |
-
|
| 1599 |
-
|
| 1600 |
-
def main():
|
| 1601 |
-
"""
|
| 1602 |
-
Main function to handle argument parsing and execute the sequence of operations
|
| 1603 |
-
including data generation and processing with multiple models.
|
| 1604 |
-
"""
|
| 1605 |
-
parser = argparse.ArgumentParser(description='SimLLM.')
|
| 1606 |
-
|
| 1607 |
-
# Argument for specifying the list of large language models
|
| 1608 |
-
parser.add_argument('--LLMs', nargs="+", default=[CHATGPT],#, "Yi", "OpenChat"],
|
| 1609 |
-
help='List of large language models')
|
| 1610 |
-
|
| 1611 |
-
# Argument for specifying the list of training indexes
|
| 1612 |
-
parser.add_argument('--train_indexes', type=int, default=[0,1,2], nargs="+",
|
| 1613 |
-
help='List of training indexes')
|
| 1614 |
-
|
| 1615 |
-
# Argument for specifying the list of testing indexes
|
| 1616 |
-
parser.add_argument('--test_indexes', type=int, default=[0], nargs="+",
|
| 1617 |
-
help='List of testing indexes')
|
| 1618 |
-
|
| 1619 |
-
# Argument for specifying the number of samples
|
| 1620 |
-
parser.add_argument('--num_samples', type=int, default=5000,
|
| 1621 |
-
help='Number of samples')
|
| 1622 |
-
|
| 1623 |
-
# Argument for multimodel_csv_file
|
| 1624 |
-
parser.add_argument('--multimodel_csv_file', type=str, default="data/ChatGPT_Nous_Hermes_2_Yi_34B_openchat_3_5_1210_with_best_similarity.csv",
|
| 1625 |
-
help='multimodel_csv_file')
|
| 1626 |
-
|
| 1627 |
-
# Parse the command-line arguments
|
| 1628 |
-
args = parser.parse_args()
|
| 1629 |
-
|
| 1630 |
-
if args.multimodel_csv_file == "":
|
| 1631 |
-
# Static dataset parameters
|
| 1632 |
-
dataset_name = "xsum"
|
| 1633 |
-
column_name = "document"
|
| 1634 |
-
num_samples = args.num_samples
|
| 1635 |
-
output_file = "data/test.csv"
|
| 1636 |
-
|
| 1637 |
-
# Generate human data with shuffle
|
| 1638 |
-
# generate_human_with_shuffle(dataset_name, column_name, num_samples, output_file)
|
| 1639 |
-
|
| 1640 |
-
# Existing data parameters
|
| 1641 |
-
existing_data_file = output_file
|
| 1642 |
-
existing_kinds = []
|
| 1643 |
-
|
| 1644 |
-
# New kinds of models to generate data with
|
| 1645 |
-
new_kinds = args.LLMs
|
| 1646 |
-
|
| 1647 |
-
# Generate new data with best similarity
|
| 1648 |
-
generate_new_data_with_best_similarity(existing_data_file, existing_kinds, new_kinds)
|
| 1649 |
-
|
| 1650 |
-
# Generate a filename for the multimodel CSV file
|
| 1651 |
-
multimodel_csv_file = generate_file_name(existing_data_file, existing_kinds, new_kinds)
|
| 1652 |
-
|
| 1653 |
-
else:
|
| 1654 |
-
multimodel_csv_file = args.multimodel_csv_file
|
| 1655 |
-
|
| 1656 |
-
# Number of samples to process (-1 means process all samples)
|
| 1657 |
-
num_samples_to_process = -1
|
| 1658 |
-
|
| 1659 |
-
# Training and testing indexes from arguments
|
| 1660 |
-
training_indexes = args.train_indexes
|
| 1661 |
-
testing_indexes = args.test_indexes
|
| 1662 |
-
|
| 1663 |
-
# Process multiple models with validation
|
| 1664 |
-
process_multi_models_with_validation(multimodel_csv_file, training_indexes, testing_indexes, num_samples_to_process)
|
| 1665 |
-
|
| 1666 |
-
if __name__ == "__main__":
|
| 1667 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/texts/SimLLM/bart_score.py
DELETED
|
@@ -1,136 +0,0 @@
|
|
| 1 |
-
# %%
|
| 2 |
-
import traceback
|
| 3 |
-
from typing import List
|
| 4 |
-
|
| 5 |
-
import numpy as np
|
| 6 |
-
import torch
|
| 7 |
-
import torch.nn as nn
|
| 8 |
-
from transformers import (
|
| 9 |
-
BartForConditionalGeneration,
|
| 10 |
-
BartTokenizer,
|
| 11 |
-
)
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
class BARTScorer:
|
| 15 |
-
def __init__(
|
| 16 |
-
self,
|
| 17 |
-
device="cuda:0",
|
| 18 |
-
max_length=1024,
|
| 19 |
-
checkpoint="facebook/bart-large-cnn",
|
| 20 |
-
):
|
| 21 |
-
# Set up model
|
| 22 |
-
self.device = device
|
| 23 |
-
self.max_length = max_length
|
| 24 |
-
self.tokenizer = BartTokenizer.from_pretrained(checkpoint)
|
| 25 |
-
self.model = BartForConditionalGeneration.from_pretrained(checkpoint)
|
| 26 |
-
self.model.eval()
|
| 27 |
-
self.model.to(device)
|
| 28 |
-
|
| 29 |
-
# Set up loss
|
| 30 |
-
self.loss_fct = nn.NLLLoss(
|
| 31 |
-
reduction="none",
|
| 32 |
-
ignore_index=self.model.config.pad_token_id,
|
| 33 |
-
)
|
| 34 |
-
self.lsm = nn.LogSoftmax(dim=1)
|
| 35 |
-
|
| 36 |
-
def load(self, path=None):
|
| 37 |
-
"""Load model from paraphrase finetuning"""
|
| 38 |
-
if path is None:
|
| 39 |
-
path = "./bart.pth"
|
| 40 |
-
|
| 41 |
-
self.model.load_state_dict(torch.load(path, map_location=self.device))
|
| 42 |
-
|
| 43 |
-
def score(self, srcs, tgts, batch_size=16):
|
| 44 |
-
"""Score a batch of examples"""
|
| 45 |
-
score_list = []
|
| 46 |
-
for i in range(0, len(srcs), batch_size):
|
| 47 |
-
src_list = srcs[i : i + batch_size]
|
| 48 |
-
tgt_list = tgts[i : i + batch_size]
|
| 49 |
-
try:
|
| 50 |
-
with torch.no_grad():
|
| 51 |
-
encoded_src = self.tokenizer(
|
| 52 |
-
src_list,
|
| 53 |
-
max_length=self.max_length,
|
| 54 |
-
truncation=True,
|
| 55 |
-
padding=True,
|
| 56 |
-
return_tensors="pt",
|
| 57 |
-
)
|
| 58 |
-
encoded_tgt = self.tokenizer(
|
| 59 |
-
tgt_list,
|
| 60 |
-
max_length=self.max_length,
|
| 61 |
-
truncation=True,
|
| 62 |
-
padding=True,
|
| 63 |
-
return_tensors="pt",
|
| 64 |
-
)
|
| 65 |
-
src_tokens = encoded_src["input_ids"].to(self.device)
|
| 66 |
-
src_mask = encoded_src["attention_mask"].to(self.device)
|
| 67 |
-
|
| 68 |
-
tgt_tokens = encoded_tgt["input_ids"].to(self.device)
|
| 69 |
-
tgt_mask = encoded_tgt["attention_mask"]
|
| 70 |
-
tgt_len = tgt_mask.sum(dim=1).to(self.device)
|
| 71 |
-
|
| 72 |
-
output = self.model(
|
| 73 |
-
input_ids=src_tokens,
|
| 74 |
-
attention_mask=src_mask,
|
| 75 |
-
labels=tgt_tokens,
|
| 76 |
-
)
|
| 77 |
-
logits = output.logits.view(
|
| 78 |
-
-1,
|
| 79 |
-
self.model.config.vocab_size,
|
| 80 |
-
)
|
| 81 |
-
loss = self.loss_fct(self.lsm(logits), tgt_tokens.view(-1))
|
| 82 |
-
loss = loss.view(tgt_tokens.shape[0], -1)
|
| 83 |
-
loss = loss.sum(dim=1) / tgt_len
|
| 84 |
-
curr_score_list = [-x.item() for x in loss]
|
| 85 |
-
score_list += curr_score_list
|
| 86 |
-
|
| 87 |
-
except RuntimeError:
|
| 88 |
-
traceback.print_exc()
|
| 89 |
-
print(f"source: {src_list}")
|
| 90 |
-
print(f"target: {tgt_list}")
|
| 91 |
-
exit(0)
|
| 92 |
-
return score_list
|
| 93 |
-
|
| 94 |
-
def multi_ref_score(
|
| 95 |
-
self,
|
| 96 |
-
srcs,
|
| 97 |
-
tgts: List[List[str]],
|
| 98 |
-
agg="mean",
|
| 99 |
-
batch_size=4,
|
| 100 |
-
):
|
| 101 |
-
# Assert we have the same number of references
|
| 102 |
-
ref_nums = [len(x) for x in tgts]
|
| 103 |
-
if len(set(ref_nums)) > 1:
|
| 104 |
-
raise Exception(
|
| 105 |
-
"You have different number of references per test sample.",
|
| 106 |
-
)
|
| 107 |
-
|
| 108 |
-
ref_num = len(tgts[0])
|
| 109 |
-
score_matrix = []
|
| 110 |
-
for i in range(ref_num):
|
| 111 |
-
curr_tgts = [x[i] for x in tgts]
|
| 112 |
-
scores = self.score(srcs, curr_tgts, batch_size)
|
| 113 |
-
score_matrix.append(scores)
|
| 114 |
-
if agg == "mean":
|
| 115 |
-
score_list = np.mean(score_matrix, axis=0)
|
| 116 |
-
elif agg == "max":
|
| 117 |
-
score_list = np.max(score_matrix, axis=0)
|
| 118 |
-
else:
|
| 119 |
-
raise NotImplementedError
|
| 120 |
-
return list(score_list)
|
| 121 |
-
|
| 122 |
-
def test(self, batch_size=3):
|
| 123 |
-
"""Test"""
|
| 124 |
-
src_list = [
|
| 125 |
-
"This is a very good idea. Although simple, but very insightful.",
|
| 126 |
-
"Can I take a look?",
|
| 127 |
-
"Do not trust him, he is a liar.",
|
| 128 |
-
]
|
| 129 |
-
|
| 130 |
-
tgt_list = [
|
| 131 |
-
"That's stupid.",
|
| 132 |
-
"What's the problem?",
|
| 133 |
-
"He is trustworthy.",
|
| 134 |
-
]
|
| 135 |
-
|
| 136 |
-
print(self.score(src_list, tgt_list, batch_size))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|