Spaces:
Sleeping
Sleeping
Commit
·
bfe6692
1
Parent(s):
62dc9d8
pre-commit
Browse files- gpt_test.py +41 -21
- src/application/content_detection.py +118 -85
- src/application/text/entity.py +1 -1
- src/application/text/helper.py +3 -2
- src/application/text/model_detection.py +15 -10
- src/application/text/search_detection.py +28 -16
- test.py +1 -1
gpt_test.py
CHANGED
|
@@ -1,28 +1,35 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
|
| 3 |
from dotenv import load_dotenv
|
| 4 |
-
from openai import
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
-
import csv
|
| 8 |
-
|
| 9 |
def get_first_column(csv_filepath):
|
| 10 |
"""
|
| 11 |
-
Reads a CSV file with a header and returns a list containing only the
|
| 12 |
values from the first column.
|
| 13 |
|
| 14 |
Args:
|
| 15 |
csv_filepath: The path to the CSV file.
|
| 16 |
|
| 17 |
Returns:
|
| 18 |
-
A list of strings, where each string is a value from the first
|
| 19 |
-
column of the CSV file.
|
| 20 |
-
|
|
|
|
| 21 |
Prints an error message to the console in case of file errors.
|
| 22 |
"""
|
| 23 |
first_column_values = []
|
| 24 |
try:
|
| 25 |
-
with open(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
reader = csv.reader(csvfile)
|
| 27 |
next(reader, None) # Skip the header row (if it exists)
|
| 28 |
|
|
@@ -32,21 +39,29 @@ def get_first_column(csv_filepath):
|
|
| 32 |
|
| 33 |
except FileNotFoundError:
|
| 34 |
print(f"Error: File not found at {csv_filepath}")
|
| 35 |
-
except
|
|
|
|
|
|
|
| 36 |
print(f"An error occurred: {e}")
|
| 37 |
-
|
| 38 |
return first_column_values
|
| 39 |
|
|
|
|
| 40 |
def add_text_to_csv(csv_filepath, text_to_add, index=0):
|
| 41 |
"""
|
| 42 |
Adds text to a single-column CSV file (UTF-8 encoding).
|
| 43 |
|
| 44 |
Args:
|
| 45 |
csv_filepath: The path to the CSV file.
|
| 46 |
-
text_to_add: The text to append to
|
| 47 |
"""
|
| 48 |
try:
|
| 49 |
-
with open(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
writer = csv.writer(csvfile)
|
| 51 |
|
| 52 |
# Check if file is empty to determine if header needs to be written
|
|
@@ -58,13 +73,18 @@ def add_text_to_csv(csv_filepath, text_to_add, index=0):
|
|
| 58 |
|
| 59 |
if isinstance(text_to_add, list): # Check if text_to_add is a list
|
| 60 |
for text_item in text_to_add:
|
| 61 |
-
writer.writerow(
|
|
|
|
|
|
|
| 62 |
else: # If not a list, assume it's a single string
|
| 63 |
-
writer.writerow(
|
|
|
|
|
|
|
| 64 |
|
| 65 |
except Exception as e:
|
| 66 |
print(f"An error occurred: {e}")
|
| 67 |
|
|
|
|
| 68 |
load_dotenv()
|
| 69 |
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
|
| 70 |
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
|
|
@@ -76,25 +96,25 @@ azure_client = AzureOpenAI(
|
|
| 76 |
api_version="2024-05-01-preview",
|
| 77 |
)
|
| 78 |
|
| 79 |
-
deplopment_name = "gpt-4o-mini"
|
| 80 |
TEXT_PROMPT = """
|
| 81 |
Paraphrase the following news, only output the paraphrased text:
|
| 82 |
|
| 83 |
"""
|
| 84 |
text = get_first_column("data/MAGE.csv")
|
| 85 |
-
count
|
| 86 |
for index, news in enumerate(text):
|
| 87 |
if count > 1000:
|
| 88 |
break
|
| 89 |
prompt = TEXT_PROMPT + news
|
| 90 |
print(f"{index:5}:\t{news[:50]}")
|
| 91 |
-
#print(f"{index:5}:\t{prompt}")
|
| 92 |
-
|
| 93 |
try:
|
| 94 |
response = azure_client.chat.completions.create(
|
| 95 |
model=deplopment_name, # model = "deployment_name".
|
| 96 |
messages=[
|
| 97 |
-
# {"role": "system", "content": "You
|
| 98 |
{"role": "user", "content": prompt},
|
| 99 |
],
|
| 100 |
# max_tokens=512,
|
|
@@ -103,8 +123,8 @@ for index, news in enumerate(text):
|
|
| 103 |
except OpenAIError as e:
|
| 104 |
print(f"Error interacting with OpenAI API: {e}")
|
| 105 |
continue
|
| 106 |
-
|
| 107 |
count += 1
|
| 108 |
paraphrased_news = response.choices[0].message.content
|
| 109 |
-
|
| 110 |
add_text_to_csv("data/MAGE_4o_mini.csv", paraphrased_news, count)
|
|
|
|
| 1 |
+
import csv
|
| 2 |
import os
|
| 3 |
|
| 4 |
from dotenv import load_dotenv
|
| 5 |
+
from openai import (
|
| 6 |
+
AzureOpenAI,
|
| 7 |
+
OpenAIError,
|
| 8 |
+
)
|
| 9 |
|
| 10 |
|
|
|
|
|
|
|
| 11 |
def get_first_column(csv_filepath):
|
| 12 |
"""
|
| 13 |
+
Reads a CSV file with a header and returns a list containing only the
|
| 14 |
values from the first column.
|
| 15 |
|
| 16 |
Args:
|
| 17 |
csv_filepath: The path to the CSV file.
|
| 18 |
|
| 19 |
Returns:
|
| 20 |
+
A list of strings, where each string is a value from the first
|
| 21 |
+
column of the CSV file.
|
| 22 |
+
Returns an empty list if there's an error opening or reading
|
| 23 |
+
the file, or if the file has no rows after the header.
|
| 24 |
Prints an error message to the console in case of file errors.
|
| 25 |
"""
|
| 26 |
first_column_values = []
|
| 27 |
try:
|
| 28 |
+
with open(
|
| 29 |
+
csv_filepath,
|
| 30 |
+
newline="",
|
| 31 |
+
encoding="utf-8",
|
| 32 |
+
) as csvfile: # Handle potential encoding issues
|
| 33 |
reader = csv.reader(csvfile)
|
| 34 |
next(reader, None) # Skip the header row (if it exists)
|
| 35 |
|
|
|
|
| 39 |
|
| 40 |
except FileNotFoundError:
|
| 41 |
print(f"Error: File not found at {csv_filepath}")
|
| 42 |
+
except (
|
| 43 |
+
Exception
|
| 44 |
+
) as e: # Catch other potential errors (e.g., UnicodeDecodeError)
|
| 45 |
print(f"An error occurred: {e}")
|
| 46 |
+
|
| 47 |
return first_column_values
|
| 48 |
|
| 49 |
+
|
| 50 |
def add_text_to_csv(csv_filepath, text_to_add, index=0):
|
| 51 |
"""
|
| 52 |
Adds text to a single-column CSV file (UTF-8 encoding).
|
| 53 |
|
| 54 |
Args:
|
| 55 |
csv_filepath: The path to the CSV file.
|
| 56 |
+
text_to_add: The text to append to CSV file (one value per new row).
|
| 57 |
"""
|
| 58 |
try:
|
| 59 |
+
with open(
|
| 60 |
+
csv_filepath,
|
| 61 |
+
"a",
|
| 62 |
+
newline="",
|
| 63 |
+
encoding="utf-8",
|
| 64 |
+
) as csvfile: # 'a' for append mode
|
| 65 |
writer = csv.writer(csvfile)
|
| 66 |
|
| 67 |
# Check if file is empty to determine if header needs to be written
|
|
|
|
| 73 |
|
| 74 |
if isinstance(text_to_add, list): # Check if text_to_add is a list
|
| 75 |
for text_item in text_to_add:
|
| 76 |
+
writer.writerow(
|
| 77 |
+
[index, text_item],
|
| 78 |
+
) # Write text_item as a single-element row
|
| 79 |
else: # If not a list, assume it's a single string
|
| 80 |
+
writer.writerow(
|
| 81 |
+
[index, text_to_add],
|
| 82 |
+
) # Write text_to_add as a single-element row
|
| 83 |
|
| 84 |
except Exception as e:
|
| 85 |
print(f"An error occurred: {e}")
|
| 86 |
|
| 87 |
+
|
| 88 |
load_dotenv()
|
| 89 |
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
|
| 90 |
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
|
|
|
|
| 96 |
api_version="2024-05-01-preview",
|
| 97 |
)
|
| 98 |
|
| 99 |
+
deplopment_name = "gpt-4o-mini" # "o1-mini" # or "gpt-4o"
|
| 100 |
TEXT_PROMPT = """
|
| 101 |
Paraphrase the following news, only output the paraphrased text:
|
| 102 |
|
| 103 |
"""
|
| 104 |
text = get_first_column("data/MAGE.csv")
|
| 105 |
+
count = 0
|
| 106 |
for index, news in enumerate(text):
|
| 107 |
if count > 1000:
|
| 108 |
break
|
| 109 |
prompt = TEXT_PROMPT + news
|
| 110 |
print(f"{index:5}:\t{news[:50]}")
|
| 111 |
+
# print(f"{index:5}:\t{prompt}")
|
| 112 |
+
|
| 113 |
try:
|
| 114 |
response = azure_client.chat.completions.create(
|
| 115 |
model=deplopment_name, # model = "deployment_name".
|
| 116 |
messages=[
|
| 117 |
+
# {"role": "system", "content": "You're an assistant."},
|
| 118 |
{"role": "user", "content": prompt},
|
| 119 |
],
|
| 120 |
# max_tokens=512,
|
|
|
|
| 123 |
except OpenAIError as e:
|
| 124 |
print(f"Error interacting with OpenAI API: {e}")
|
| 125 |
continue
|
| 126 |
+
|
| 127 |
count += 1
|
| 128 |
paraphrased_news = response.choices[0].message.content
|
| 129 |
+
|
| 130 |
add_text_to_csv("data/MAGE_4o_mini.csv", paraphrased_news, count)
|
src/application/content_detection.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
from difflib import SequenceMatcher
|
| 2 |
|
| 3 |
-
import numpy as np
|
| 4 |
import pandas as pd
|
| 5 |
|
| 6 |
from src.application.image.image_detection import (
|
|
@@ -13,7 +12,10 @@ from src.application.text.entity import (
|
|
| 13 |
highlight_entities,
|
| 14 |
)
|
| 15 |
from src.application.text.helper import extract_equal_text
|
| 16 |
-
from src.application.text.model_detection import
|
|
|
|
|
|
|
|
|
|
| 17 |
from src.application.text.preprocessing import split_into_paragraphs
|
| 18 |
from src.application.text.search_detection import (
|
| 19 |
PARAPHRASE_THRESHOLD_MACHINE,
|
|
@@ -30,17 +32,17 @@ class NewsVerification:
|
|
| 30 |
|
| 31 |
self.text_prediction_label: list[str] = ["UNKNOWN"]
|
| 32 |
self.text_prediction_score: list[float] = [0.0]
|
| 33 |
-
|
| 34 |
self.image_prediction_label: list[str] = ["UNKNOWN"]
|
| 35 |
self.image_prediction_score: list[str] = [0.0]
|
| 36 |
self.image_referent_url: list[str] = []
|
| 37 |
-
|
| 38 |
self.news_prediction_label = ""
|
| 39 |
self.news_prediction_score = -1
|
| 40 |
|
| 41 |
# news' urls to find img
|
| 42 |
self.found_img_url: list[str] = []
|
| 43 |
-
|
| 44 |
# Analyzed results
|
| 45 |
self.aligned_paragraphs_df: pd.DataFrame = pd.DataFrame(
|
| 46 |
columns=[
|
|
@@ -69,24 +71,26 @@ class NewsVerification:
|
|
| 69 |
|
| 70 |
def determine_text_origin(self):
|
| 71 |
self.find_text_source()
|
| 72 |
-
|
| 73 |
# Group inout and source by url
|
| 74 |
def concat_text(series):
|
| 75 |
-
return
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
| 78 |
{
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
self.grouped_url_df = self.grouped_url_df.reset_index()
|
| 84 |
# Add new columns for label and score
|
| 85 |
self.grouped_url_df["label"] = None
|
| 86 |
self.grouped_url_df["score"] = None
|
| 87 |
-
|
| 88 |
print(f"aligned_paragraphs_df:\n {self.aligned_paragraphs_df}")
|
| 89 |
-
|
| 90 |
for index, row in self.grouped_url_df.iterrows():
|
| 91 |
label, score = self.verify_text(row["url"])
|
| 92 |
if label == "UNKNOWN":
|
|
@@ -95,18 +99,21 @@ class NewsVerification:
|
|
| 95 |
|
| 96 |
# detect by baseline model
|
| 97 |
label, score = detect_text_by_ai_model(text)
|
| 98 |
-
|
| 99 |
self.grouped_url_df.at[index, "label"] = label
|
| 100 |
self.grouped_url_df.at[index, "score"] = score
|
| 101 |
|
| 102 |
# Overall label or score for the whole input text
|
| 103 |
if len(self.grouped_url_df) > 0:
|
| 104 |
-
# filter self.aligned_paragraphs_df["label"] if inclucind substring MACHINE
|
| 105 |
machine_label = self.grouped_url_df[
|
| 106 |
-
self.grouped_url_df["label"].str.contains(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
]
|
| 108 |
# machine_label = self.aligned_paragraphs_df[
|
| 109 |
-
# self.aligned_paragraphs_df["label"] == "MACHINE"
|
| 110 |
# ]
|
| 111 |
if len(machine_label) > 0:
|
| 112 |
label = " ".join(machine_label["label"].tolist())
|
|
@@ -118,14 +125,14 @@ class NewsVerification:
|
|
| 118 |
]
|
| 119 |
self.text_prediction_label[0] = "HUMAN"
|
| 120 |
self.text_prediction_score[0] = machine_label["score"].mean()
|
| 121 |
-
else: # no source found in the input text
|
| 122 |
print("No source found in the input text")
|
| 123 |
text = " ".join(self.aligned_paragraphs_df["input"].tolist())
|
| 124 |
# detect by baseline model
|
| 125 |
-
label, score = detect_text_by_ai_model(text)
|
| 126 |
self.text_prediction_label[0] = label
|
| 127 |
self.text_prediction_score[0] = score
|
| 128 |
-
|
| 129 |
def find_text_source(self):
|
| 130 |
"""
|
| 131 |
Determines the origin of the given text based on paraphrasing detection
|
|
@@ -148,15 +155,22 @@ class NewsVerification:
|
|
| 148 |
|
| 149 |
for _ in range(len(input_sentences)):
|
| 150 |
self.aligned_paragraphs_df = pd.concat(
|
| 151 |
-
[
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
ignore_index=True,
|
| 161 |
)
|
| 162 |
|
|
@@ -183,7 +197,8 @@ class NewsVerification:
|
|
| 183 |
def verify_text(self, url):
|
| 184 |
label = "UNKNOWN"
|
| 185 |
score = 0
|
| 186 |
-
# calculate the average similarity when the similary score
|
|
|
|
| 187 |
filtered_by_url = self.aligned_paragraphs_df[
|
| 188 |
self.aligned_paragraphs_df["url"] == url
|
| 189 |
]
|
|
@@ -192,17 +207,24 @@ class NewsVerification:
|
|
| 192 |
]
|
| 193 |
if len(filtered_by_similarity) / len(self.aligned_paragraphs_df) > 0.5:
|
| 194 |
# check if "MACHINE" is in self.aligned_sentences_df["label"]:
|
| 195 |
-
contains_machine =
|
| 196 |
-
"
|
| 197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
if contains_machine:
|
| 199 |
label = "MACHINE"
|
| 200 |
machine_rows = filtered_by_similarity[
|
| 201 |
filtered_by_similarity["label"].str.contains(
|
| 202 |
"MACHINE",
|
| 203 |
case=False,
|
| 204 |
-
na=False
|
| 205 |
-
|
|
|
|
| 206 |
generated_model, _ = predict_generation_model(self.news_text)
|
| 207 |
label += f"<br>({generated_model})"
|
| 208 |
score = machine_rows["similarity"].mean()
|
|
@@ -212,12 +234,12 @@ class NewsVerification:
|
|
| 212 |
filtered_by_similarity["label"].str.contains(
|
| 213 |
"HUMAN",
|
| 214 |
case=False,
|
| 215 |
-
na=False
|
| 216 |
-
|
|
|
|
| 217 |
score = human_rows["similarity"].mean()
|
| 218 |
-
|
| 219 |
return label, score
|
| 220 |
-
|
| 221 |
|
| 222 |
def determine_image_origin(self):
|
| 223 |
print("CHECK IMAGE:")
|
|
@@ -267,14 +289,14 @@ class NewsVerification:
|
|
| 267 |
self.determine_image_origin()
|
| 268 |
|
| 269 |
def analyze_details(self):
|
| 270 |
-
self.handle_entities()
|
| 271 |
ordinary_user_table = self.create_ordinary_user_table()
|
| 272 |
fact_checker_table = self.create_fact_checker_table()
|
| 273 |
governor_table = self.create_governor_table()
|
| 274 |
|
| 275 |
return ordinary_user_table, fact_checker_table, governor_table
|
| 276 |
-
|
| 277 |
-
def handle_entities(self):
|
| 278 |
entities_with_colors = []
|
| 279 |
for index, row in self.grouped_url_df.iterrows():
|
| 280 |
# Get entity-words (in pair) with colors
|
|
@@ -283,12 +305,11 @@ class NewsVerification:
|
|
| 283 |
row["source"],
|
| 284 |
)
|
| 285 |
|
| 286 |
-
#self.grouped_url_df.at[index, "entities"] = entities_with_colors # must use at
|
| 287 |
-
|
| 288 |
for index, paragraph in self.aligned_paragraphs_df.iterrows():
|
| 289 |
if paragraph["url"] == row["url"]:
|
| 290 |
-
self.aligned_paragraphs_df.at[index, "entities"] =
|
| 291 |
-
|
|
|
|
| 292 |
|
| 293 |
def get_text_urls(self):
|
| 294 |
return set(self.text_referent_url)
|
|
@@ -336,13 +357,13 @@ class NewsVerification:
|
|
| 336 |
rows.append(self.format_image_fact_checker_row(max_length))
|
| 337 |
|
| 338 |
for _, row in self.aligned_paragraphs_df.iterrows():
|
| 339 |
-
if row["input"]
|
| 340 |
continue
|
| 341 |
-
|
| 342 |
-
if row["source"]
|
| 343 |
equal_idx_1 = equal_idx_2 = []
|
| 344 |
-
|
| 345 |
-
else:
|
| 346 |
equal_idx_1, equal_idx_2 = extract_equal_text(
|
| 347 |
row["input"],
|
| 348 |
row["source"],
|
|
@@ -354,33 +375,42 @@ class NewsVerification:
|
|
| 354 |
equal_idx_1,
|
| 355 |
equal_idx_2,
|
| 356 |
row["entities"],
|
| 357 |
-
row["url"]
|
| 358 |
],
|
| 359 |
)
|
| 360 |
-
|
| 361 |
previous_url = None
|
| 362 |
span_row = 1
|
| 363 |
-
for index, row in enumerate(self.fact_checker_table):
|
| 364 |
current_url = row[4]
|
| 365 |
last_url_row = False
|
| 366 |
-
|
| 367 |
# First row or URL change
|
| 368 |
if index == 0 or current_url != previous_url:
|
| 369 |
first_url_row = True
|
| 370 |
previous_url = current_url
|
| 371 |
# Increase counter "span_row" when the next url is the same
|
| 372 |
-
while
|
| 373 |
-
|
|
|
|
|
|
|
|
|
|
| 374 |
span_row += 1
|
| 375 |
-
|
| 376 |
else:
|
| 377 |
first_url_row = False
|
| 378 |
span_row -= 1
|
| 379 |
-
|
| 380 |
if span_row == 1:
|
| 381 |
last_url_row = True
|
| 382 |
-
|
| 383 |
-
formatted_row = self.format_text_fact_checker_row(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
rows.append(formatted_row)
|
| 385 |
|
| 386 |
table = "\n".join(rows)
|
|
@@ -436,7 +466,7 @@ class NewsVerification:
|
|
| 436 |
source_sentence = row[0]["source"]
|
| 437 |
highlight_idx_input = []
|
| 438 |
highlight_idx_source = []
|
| 439 |
-
|
| 440 |
if row[3] is not None:
|
| 441 |
entity_count = len(row[3])
|
| 442 |
|
|
@@ -453,7 +483,7 @@ class NewsVerification:
|
|
| 453 |
) # text, index of highlight words
|
| 454 |
|
| 455 |
# Replace _ to get correct formatting
|
| 456 |
-
# Original one having _ for correct word counting
|
| 457 |
input_sentence = input_sentence.replace(
|
| 458 |
"span_style",
|
| 459 |
"span style",
|
|
@@ -468,24 +498,22 @@ class NewsVerification:
|
|
| 468 |
|
| 469 |
url = row[0]["url"]
|
| 470 |
# Displayed label and score by url
|
| 471 |
-
filterby_url = self.grouped_url_df[
|
| 472 |
-
self.grouped_url_df["url"] == url
|
| 473 |
-
]
|
| 474 |
if len(filterby_url) > 0:
|
| 475 |
label = filterby_url["label"].values[0]
|
| 476 |
score = filterby_url["score"].values[0]
|
| 477 |
-
else:
|
| 478 |
label = self.text_prediction_label[0]
|
| 479 |
score = self.text_prediction_score[0]
|
| 480 |
|
| 481 |
# Format displayed url
|
| 482 |
-
|
| 483 |
short_url = self.shorten_url(url, max_length)
|
| 484 |
source_text_url = f"""<a href="{url}">{short_url}</a>"""
|
| 485 |
|
| 486 |
# Format displayed entity count
|
| 487 |
entity_count_text = self.get_entity_count_text(entity_count)
|
| 488 |
-
|
| 489 |
border_top = "border-top: 1px solid transparent;"
|
| 490 |
border_bottom = "border-bottom: 1px solid transparent;"
|
| 491 |
if first_url_row is True:
|
|
@@ -580,7 +608,7 @@ class NewsVerification:
|
|
| 580 |
source_text_urls = ""
|
| 581 |
urls = []
|
| 582 |
for _, row in self.aligned_paragraphs_df.iterrows():
|
| 583 |
-
if row["input"]
|
| 584 |
continue
|
| 585 |
input_sentences += row["input"] + "<br><br>"
|
| 586 |
url = row["url"]
|
|
@@ -620,13 +648,13 @@ class NewsVerification:
|
|
| 620 |
rows.append(self.format_image_governor_row(max_length))
|
| 621 |
|
| 622 |
for _, row in self.aligned_paragraphs_df.iterrows():
|
| 623 |
-
if row["input"]
|
| 624 |
continue
|
| 625 |
-
|
| 626 |
-
if row["source"]
|
| 627 |
equal_idx_1 = equal_idx_2 = []
|
| 628 |
-
|
| 629 |
-
else:
|
| 630 |
# Get index of equal phrases in input and source sentences
|
| 631 |
equal_idx_1, equal_idx_2 = extract_equal_text(
|
| 632 |
row["input"],
|
|
@@ -680,19 +708,25 @@ class NewsVerification:
|
|
| 680 |
if row[0]["input"] is None:
|
| 681 |
continue
|
| 682 |
|
| 683 |
-
if
|
|
|
|
|
|
|
| 684 |
# highlight entities
|
| 685 |
input_sentence, highlight_idx_input = apply_highlight(
|
| 686 |
row[0]["input"],
|
| 687 |
row[3], # entities_with_colors
|
| 688 |
"input", # key
|
| 689 |
-
entity_count[
|
|
|
|
|
|
|
| 690 |
)
|
| 691 |
source_sentence, highlight_idx_source = apply_highlight(
|
| 692 |
row[0]["source"],
|
| 693 |
row[3], # entities_with_colors
|
| 694 |
"source", # key
|
| 695 |
-
entity_count[
|
|
|
|
|
|
|
| 696 |
)
|
| 697 |
|
| 698 |
# Color overlapping words
|
|
@@ -722,12 +756,11 @@ class NewsVerification:
|
|
| 722 |
else:
|
| 723 |
source_sentence = row[0]["source"]
|
| 724 |
input_sentence = row[0]["input"]
|
| 725 |
-
|
| 726 |
|
| 727 |
# convert score to HUMAN-based score:
|
| 728 |
input_sentences += input_sentence + "<br><br>"
|
| 729 |
source_sentences += source_sentence + "<br><br>"
|
| 730 |
-
|
| 731 |
url = row[0]["url"]
|
| 732 |
if url not in urls:
|
| 733 |
urls.append(url)
|
|
@@ -736,7 +769,7 @@ class NewsVerification:
|
|
| 736 |
sentence_count += 1
|
| 737 |
if row[3] is not None:
|
| 738 |
entity_count.append(len(row[3]))
|
| 739 |
-
|
| 740 |
entity_count_text = self.get_entity_count_text(sum(entity_count))
|
| 741 |
|
| 742 |
return f"""
|
|
@@ -791,7 +824,7 @@ class NewsVerification:
|
|
| 791 |
|
| 792 |
starts, ends = self.extract_starts_ends(colored_idx)
|
| 793 |
starts, ends = self.filter_indices(starts, ends, highlighted_idx)
|
| 794 |
-
|
| 795 |
previous_end = 0
|
| 796 |
for start, end in zip(starts, ends):
|
| 797 |
paragraph += " ".join(words[previous_end:start])
|
|
@@ -892,4 +925,4 @@ class NewsVerification:
|
|
| 892 |
starts.append(start)
|
| 893 |
ends.append(end)
|
| 894 |
|
| 895 |
-
return starts, ends
|
|
|
|
| 1 |
from difflib import SequenceMatcher
|
| 2 |
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
|
| 5 |
from src.application.image.image_detection import (
|
|
|
|
| 12 |
highlight_entities,
|
| 13 |
)
|
| 14 |
from src.application.text.helper import extract_equal_text
|
| 15 |
+
from src.application.text.model_detection import (
|
| 16 |
+
detect_text_by_ai_model,
|
| 17 |
+
predict_generation_model,
|
| 18 |
+
)
|
| 19 |
from src.application.text.preprocessing import split_into_paragraphs
|
| 20 |
from src.application.text.search_detection import (
|
| 21 |
PARAPHRASE_THRESHOLD_MACHINE,
|
|
|
|
| 32 |
|
| 33 |
self.text_prediction_label: list[str] = ["UNKNOWN"]
|
| 34 |
self.text_prediction_score: list[float] = [0.0]
|
| 35 |
+
|
| 36 |
self.image_prediction_label: list[str] = ["UNKNOWN"]
|
| 37 |
self.image_prediction_score: list[str] = [0.0]
|
| 38 |
self.image_referent_url: list[str] = []
|
| 39 |
+
|
| 40 |
self.news_prediction_label = ""
|
| 41 |
self.news_prediction_score = -1
|
| 42 |
|
| 43 |
# news' urls to find img
|
| 44 |
self.found_img_url: list[str] = []
|
| 45 |
+
|
| 46 |
# Analyzed results
|
| 47 |
self.aligned_paragraphs_df: pd.DataFrame = pd.DataFrame(
|
| 48 |
columns=[
|
|
|
|
| 71 |
|
| 72 |
def determine_text_origin(self):
|
| 73 |
self.find_text_source()
|
| 74 |
+
|
| 75 |
# Group inout and source by url
|
| 76 |
def concat_text(series):
|
| 77 |
+
return " ".join(
|
| 78 |
+
series.astype(str).tolist(),
|
| 79 |
+
) # Handle mixed data types and NaNs
|
| 80 |
+
|
| 81 |
+
self.grouped_url_df = self.aligned_paragraphs_df.groupby("url").agg(
|
| 82 |
{
|
| 83 |
+
"input": concat_text,
|
| 84 |
+
"source": concat_text,
|
| 85 |
+
},
|
| 86 |
+
)
|
| 87 |
self.grouped_url_df = self.grouped_url_df.reset_index()
|
| 88 |
# Add new columns for label and score
|
| 89 |
self.grouped_url_df["label"] = None
|
| 90 |
self.grouped_url_df["score"] = None
|
| 91 |
+
|
| 92 |
print(f"aligned_paragraphs_df:\n {self.aligned_paragraphs_df}")
|
| 93 |
+
|
| 94 |
for index, row in self.grouped_url_df.iterrows():
|
| 95 |
label, score = self.verify_text(row["url"])
|
| 96 |
if label == "UNKNOWN":
|
|
|
|
| 99 |
|
| 100 |
# detect by baseline model
|
| 101 |
label, score = detect_text_by_ai_model(text)
|
| 102 |
+
|
| 103 |
self.grouped_url_df.at[index, "label"] = label
|
| 104 |
self.grouped_url_df.at[index, "score"] = score
|
| 105 |
|
| 106 |
# Overall label or score for the whole input text
|
| 107 |
if len(self.grouped_url_df) > 0:
|
|
|
|
| 108 |
machine_label = self.grouped_url_df[
|
| 109 |
+
self.grouped_url_df["label"].str.contains(
|
| 110 |
+
"MACHINE",
|
| 111 |
+
case=False,
|
| 112 |
+
na=False,
|
| 113 |
+
)
|
| 114 |
]
|
| 115 |
# machine_label = self.aligned_paragraphs_df[
|
| 116 |
+
# self.aligned_paragraphs_df["label"] == "MACHINE"
|
| 117 |
# ]
|
| 118 |
if len(machine_label) > 0:
|
| 119 |
label = " ".join(machine_label["label"].tolist())
|
|
|
|
| 125 |
]
|
| 126 |
self.text_prediction_label[0] = "HUMAN"
|
| 127 |
self.text_prediction_score[0] = machine_label["score"].mean()
|
| 128 |
+
else: # no source found in the input text
|
| 129 |
print("No source found in the input text")
|
| 130 |
text = " ".join(self.aligned_paragraphs_df["input"].tolist())
|
| 131 |
# detect by baseline model
|
| 132 |
+
label, score = detect_text_by_ai_model(text)
|
| 133 |
self.text_prediction_label[0] = label
|
| 134 |
self.text_prediction_score[0] = score
|
| 135 |
+
|
| 136 |
def find_text_source(self):
|
| 137 |
"""
|
| 138 |
Determines the origin of the given text based on paraphrasing detection
|
|
|
|
| 155 |
|
| 156 |
for _ in range(len(input_sentences)):
|
| 157 |
self.aligned_paragraphs_df = pd.concat(
|
| 158 |
+
[
|
| 159 |
+
self.aligned_paragraphs_df,
|
| 160 |
+
pd.DataFrame(
|
| 161 |
+
[
|
| 162 |
+
{
|
| 163 |
+
"input": None,
|
| 164 |
+
"source": None,
|
| 165 |
+
"label": None,
|
| 166 |
+
"similarity": None,
|
| 167 |
+
"paraphrase": None,
|
| 168 |
+
"url": None,
|
| 169 |
+
"entities": None,
|
| 170 |
+
},
|
| 171 |
+
],
|
| 172 |
+
),
|
| 173 |
+
],
|
| 174 |
ignore_index=True,
|
| 175 |
)
|
| 176 |
|
|
|
|
| 197 |
def verify_text(self, url):
|
| 198 |
label = "UNKNOWN"
|
| 199 |
score = 0
|
| 200 |
+
# calculate the average similarity when the similary score
|
| 201 |
+
# in each row of sentences_df is higher than 0.8
|
| 202 |
filtered_by_url = self.aligned_paragraphs_df[
|
| 203 |
self.aligned_paragraphs_df["url"] == url
|
| 204 |
]
|
|
|
|
| 207 |
]
|
| 208 |
if len(filtered_by_similarity) / len(self.aligned_paragraphs_df) > 0.5:
|
| 209 |
# check if "MACHINE" is in self.aligned_sentences_df["label"]:
|
| 210 |
+
contains_machine = (
|
| 211 |
+
filtered_by_similarity["label"]
|
| 212 |
+
.str.contains(
|
| 213 |
+
"MACHINE",
|
| 214 |
+
case=False,
|
| 215 |
+
na=False,
|
| 216 |
+
)
|
| 217 |
+
.any()
|
| 218 |
+
)
|
| 219 |
if contains_machine:
|
| 220 |
label = "MACHINE"
|
| 221 |
machine_rows = filtered_by_similarity[
|
| 222 |
filtered_by_similarity["label"].str.contains(
|
| 223 |
"MACHINE",
|
| 224 |
case=False,
|
| 225 |
+
na=False,
|
| 226 |
+
)
|
| 227 |
+
]
|
| 228 |
generated_model, _ = predict_generation_model(self.news_text)
|
| 229 |
label += f"<br>({generated_model})"
|
| 230 |
score = machine_rows["similarity"].mean()
|
|
|
|
| 234 |
filtered_by_similarity["label"].str.contains(
|
| 235 |
"HUMAN",
|
| 236 |
case=False,
|
| 237 |
+
na=False,
|
| 238 |
+
)
|
| 239 |
+
]
|
| 240 |
score = human_rows["similarity"].mean()
|
| 241 |
+
|
| 242 |
return label, score
|
|
|
|
| 243 |
|
| 244 |
def determine_image_origin(self):
|
| 245 |
print("CHECK IMAGE:")
|
|
|
|
| 289 |
self.determine_image_origin()
|
| 290 |
|
| 291 |
def analyze_details(self):
|
| 292 |
+
self.handle_entities()
|
| 293 |
ordinary_user_table = self.create_ordinary_user_table()
|
| 294 |
fact_checker_table = self.create_fact_checker_table()
|
| 295 |
governor_table = self.create_governor_table()
|
| 296 |
|
| 297 |
return ordinary_user_table, fact_checker_table, governor_table
|
| 298 |
+
|
| 299 |
+
def handle_entities(self):
|
| 300 |
entities_with_colors = []
|
| 301 |
for index, row in self.grouped_url_df.iterrows():
|
| 302 |
# Get entity-words (in pair) with colors
|
|
|
|
| 305 |
row["source"],
|
| 306 |
)
|
| 307 |
|
|
|
|
|
|
|
| 308 |
for index, paragraph in self.aligned_paragraphs_df.iterrows():
|
| 309 |
if paragraph["url"] == row["url"]:
|
| 310 |
+
self.aligned_paragraphs_df.at[index, "entities"] = (
|
| 311 |
+
entities_with_colors # must use at
|
| 312 |
+
)
|
| 313 |
|
| 314 |
def get_text_urls(self):
|
| 315 |
return set(self.text_referent_url)
|
|
|
|
| 357 |
rows.append(self.format_image_fact_checker_row(max_length))
|
| 358 |
|
| 359 |
for _, row in self.aligned_paragraphs_df.iterrows():
|
| 360 |
+
if row["input"] is None:
|
| 361 |
continue
|
| 362 |
+
|
| 363 |
+
if row["source"] is None:
|
| 364 |
equal_idx_1 = equal_idx_2 = []
|
| 365 |
+
|
| 366 |
+
else: # Get index of equal phrases in input and source sentences
|
| 367 |
equal_idx_1, equal_idx_2 = extract_equal_text(
|
| 368 |
row["input"],
|
| 369 |
row["source"],
|
|
|
|
| 375 |
equal_idx_1,
|
| 376 |
equal_idx_2,
|
| 377 |
row["entities"],
|
| 378 |
+
row["url"],
|
| 379 |
],
|
| 380 |
)
|
| 381 |
+
|
| 382 |
previous_url = None
|
| 383 |
span_row = 1
|
| 384 |
+
for index, row in enumerate(self.fact_checker_table):
|
| 385 |
current_url = row[4]
|
| 386 |
last_url_row = False
|
| 387 |
+
|
| 388 |
# First row or URL change
|
| 389 |
if index == 0 or current_url != previous_url:
|
| 390 |
first_url_row = True
|
| 391 |
previous_url = current_url
|
| 392 |
# Increase counter "span_row" when the next url is the same
|
| 393 |
+
while (
|
| 394 |
+
index + span_row < len(self.fact_checker_table)
|
| 395 |
+
and self.fact_checker_table[index + span_row][4]
|
| 396 |
+
== current_url
|
| 397 |
+
):
|
| 398 |
span_row += 1
|
| 399 |
+
|
| 400 |
else:
|
| 401 |
first_url_row = False
|
| 402 |
span_row -= 1
|
| 403 |
+
|
| 404 |
if span_row == 1:
|
| 405 |
last_url_row = True
|
| 406 |
+
|
| 407 |
+
formatted_row = self.format_text_fact_checker_row(
|
| 408 |
+
row,
|
| 409 |
+
first_url_row,
|
| 410 |
+
last_url_row,
|
| 411 |
+
span_row,
|
| 412 |
+
max_length,
|
| 413 |
+
)
|
| 414 |
rows.append(formatted_row)
|
| 415 |
|
| 416 |
table = "\n".join(rows)
|
|
|
|
| 466 |
source_sentence = row[0]["source"]
|
| 467 |
highlight_idx_input = []
|
| 468 |
highlight_idx_source = []
|
| 469 |
+
|
| 470 |
if row[3] is not None:
|
| 471 |
entity_count = len(row[3])
|
| 472 |
|
|
|
|
| 483 |
) # text, index of highlight words
|
| 484 |
|
| 485 |
# Replace _ to get correct formatting
|
| 486 |
+
# Original one having _ for correct word counting
|
| 487 |
input_sentence = input_sentence.replace(
|
| 488 |
"span_style",
|
| 489 |
"span style",
|
|
|
|
| 498 |
|
| 499 |
url = row[0]["url"]
|
| 500 |
# Displayed label and score by url
|
| 501 |
+
filterby_url = self.grouped_url_df[self.grouped_url_df["url"] == url]
|
|
|
|
|
|
|
| 502 |
if len(filterby_url) > 0:
|
| 503 |
label = filterby_url["label"].values[0]
|
| 504 |
score = filterby_url["score"].values[0]
|
| 505 |
+
else:
|
| 506 |
label = self.text_prediction_label[0]
|
| 507 |
score = self.text_prediction_score[0]
|
| 508 |
|
| 509 |
# Format displayed url
|
| 510 |
+
|
| 511 |
short_url = self.shorten_url(url, max_length)
|
| 512 |
source_text_url = f"""<a href="{url}">{short_url}</a>"""
|
| 513 |
|
| 514 |
# Format displayed entity count
|
| 515 |
entity_count_text = self.get_entity_count_text(entity_count)
|
| 516 |
+
|
| 517 |
border_top = "border-top: 1px solid transparent;"
|
| 518 |
border_bottom = "border-bottom: 1px solid transparent;"
|
| 519 |
if first_url_row is True:
|
|
|
|
| 608 |
source_text_urls = ""
|
| 609 |
urls = []
|
| 610 |
for _, row in self.aligned_paragraphs_df.iterrows():
|
| 611 |
+
if row["input"] is None:
|
| 612 |
continue
|
| 613 |
input_sentences += row["input"] + "<br><br>"
|
| 614 |
url = row["url"]
|
|
|
|
| 648 |
rows.append(self.format_image_governor_row(max_length))
|
| 649 |
|
| 650 |
for _, row in self.aligned_paragraphs_df.iterrows():
|
| 651 |
+
if row["input"] is None:
|
| 652 |
continue
|
| 653 |
+
|
| 654 |
+
if row["source"] is None:
|
| 655 |
equal_idx_1 = equal_idx_2 = []
|
| 656 |
+
|
| 657 |
+
else:
|
| 658 |
# Get index of equal phrases in input and source sentences
|
| 659 |
equal_idx_1, equal_idx_2 = extract_equal_text(
|
| 660 |
row["input"],
|
|
|
|
| 708 |
if row[0]["input"] is None:
|
| 709 |
continue
|
| 710 |
|
| 711 |
+
if (
|
| 712 |
+
row[0]["source"] is not None and row[3] is not None
|
| 713 |
+
): # source is not empty
|
| 714 |
# highlight entities
|
| 715 |
input_sentence, highlight_idx_input = apply_highlight(
|
| 716 |
row[0]["input"],
|
| 717 |
row[3], # entities_with_colors
|
| 718 |
"input", # key
|
| 719 |
+
entity_count[
|
| 720 |
+
-2
|
| 721 |
+
], # since the last one is for current counting
|
| 722 |
)
|
| 723 |
source_sentence, highlight_idx_source = apply_highlight(
|
| 724 |
row[0]["source"],
|
| 725 |
row[3], # entities_with_colors
|
| 726 |
"source", # key
|
| 727 |
+
entity_count[
|
| 728 |
+
-2
|
| 729 |
+
], # since the last one is for current counting
|
| 730 |
)
|
| 731 |
|
| 732 |
# Color overlapping words
|
|
|
|
| 756 |
else:
|
| 757 |
source_sentence = row[0]["source"]
|
| 758 |
input_sentence = row[0]["input"]
|
|
|
|
| 759 |
|
| 760 |
# convert score to HUMAN-based score:
|
| 761 |
input_sentences += input_sentence + "<br><br>"
|
| 762 |
source_sentences += source_sentence + "<br><br>"
|
| 763 |
+
|
| 764 |
url = row[0]["url"]
|
| 765 |
if url not in urls:
|
| 766 |
urls.append(url)
|
|
|
|
| 769 |
sentence_count += 1
|
| 770 |
if row[3] is not None:
|
| 771 |
entity_count.append(len(row[3]))
|
| 772 |
+
|
| 773 |
entity_count_text = self.get_entity_count_text(sum(entity_count))
|
| 774 |
|
| 775 |
return f"""
|
|
|
|
| 824 |
|
| 825 |
starts, ends = self.extract_starts_ends(colored_idx)
|
| 826 |
starts, ends = self.filter_indices(starts, ends, highlighted_idx)
|
| 827 |
+
|
| 828 |
previous_end = 0
|
| 829 |
for start, end in zip(starts, ends):
|
| 830 |
paragraph += " ".join(words[previous_end:start])
|
|
|
|
| 925 |
starts.append(start)
|
| 926 |
ends.append(end)
|
| 927 |
|
| 928 |
+
return starts, ends
|
src/application/text/entity.py
CHANGED
|
@@ -161,7 +161,7 @@ def assign_colors_to_entities(entities):
|
|
| 161 |
|
| 162 |
|
| 163 |
def highlight_entities(text1, text2):
|
| 164 |
-
if text1
|
| 165 |
return None
|
| 166 |
|
| 167 |
entities_text = extract_entities_gpt(text1, text2)
|
|
|
|
| 161 |
|
| 162 |
|
| 163 |
def highlight_entities(text1, text2):
|
| 164 |
+
if text1 is None or text2 is None:
|
| 165 |
return None
|
| 166 |
|
| 167 |
entities_text = extract_entities_gpt(text1, text2)
|
src/application/text/helper.py
CHANGED
|
@@ -147,7 +147,7 @@ def extract_equal_text(text1, text2):
|
|
| 147 |
text = text.lower()
|
| 148 |
text = text.translate(str.maketrans("", "", string.punctuation))
|
| 149 |
return text
|
| 150 |
-
|
| 151 |
splited_text1 = cleanup(text1).split()
|
| 152 |
splited_text2 = cleanup(text2).split()
|
| 153 |
|
|
@@ -163,7 +163,8 @@ def extract_equal_text(text1, text2):
|
|
| 163 |
equal_idx_2.append({"start": j1, "end": j2})
|
| 164 |
# subtext_1 = " ".join(text1[i1:i2])
|
| 165 |
# subtext_2 = " ".join(text2[j1:j2])
|
| 166 |
-
# print(f'{tag:7} a[{i1:2}:{i2:2}] --> b[{j1:2}:{j1:2}]
|
|
|
|
| 167 |
return equal_idx_1, equal_idx_2
|
| 168 |
|
| 169 |
|
|
|
|
| 147 |
text = text.lower()
|
| 148 |
text = text.translate(str.maketrans("", "", string.punctuation))
|
| 149 |
return text
|
| 150 |
+
|
| 151 |
splited_text1 = cleanup(text1).split()
|
| 152 |
splited_text2 = cleanup(text2).split()
|
| 153 |
|
|
|
|
| 163 |
equal_idx_2.append({"start": j1, "end": j2})
|
| 164 |
# subtext_1 = " ".join(text1[i1:i2])
|
| 165 |
# subtext_2 = " ".join(text2[j1:j2])
|
| 166 |
+
# print(f'{tag:7} a[{i1:2}:{i2:2}] --> b[{j1:2}:{j1:2}]
|
| 167 |
+
# {subtext_1!r:>55} --> {subtext_2!r}')
|
| 168 |
return equal_idx_1, equal_idx_2
|
| 169 |
|
| 170 |
|
src/application/text/model_detection.py
CHANGED
|
@@ -1,11 +1,16 @@
|
|
| 1 |
-
from transformers import pipeline
|
| 2 |
import os
|
| 3 |
|
| 4 |
-
from dotenv import load_dotenv
|
| 5 |
-
from openai import AzureOpenAI, OpenAIError
|
| 6 |
-
from sentence_transformers import SentenceTransformer, util
|
| 7 |
import torch
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
load_dotenv()
|
| 11 |
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
|
|
@@ -74,7 +79,7 @@ def detect_text_by_ai_model(
|
|
| 74 |
return UNKNOWN, 0.5 # Return UNKNOWN and 0.0 confidence if error
|
| 75 |
|
| 76 |
|
| 77 |
-
def predict_generation_model(text:str) -> tuple[str, float]:
|
| 78 |
"""
|
| 79 |
Predicts if text is generated by gpt-4o or gpt-4o-mini models.
|
| 80 |
Compare the input text against the paraphrased text by the models.
|
|
@@ -94,7 +99,7 @@ def predict_generation_model(text:str) -> tuple[str, float]:
|
|
| 94 |
if similarity > best_similarity:
|
| 95 |
best_similarity = similarity
|
| 96 |
best_model = model
|
| 97 |
-
|
| 98 |
return best_model, best_similarity
|
| 99 |
|
| 100 |
|
|
@@ -125,8 +130,9 @@ Paraphrase the following news, only output the paraphrased text:
|
|
| 125 |
return paraphrased_text
|
| 126 |
except OpenAIError as e: # Add exception handling
|
| 127 |
print(f"Error in AI model inference: {e}")
|
| 128 |
-
return None
|
| 129 |
-
|
|
|
|
| 130 |
def measure_text_similarity(text1: str, text2: str) -> float:
|
| 131 |
"""
|
| 132 |
Measure the similarity between two texts.
|
|
@@ -151,4 +157,3 @@ def measure_text_similarity(text1: str, text2: str) -> float:
|
|
| 151 |
similarity = util.cos_sim(embeddings1, embeddings2).cpu().numpy()
|
| 152 |
print(similarity[0][0])
|
| 153 |
return similarity[0][0]
|
| 154 |
-
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
|
|
|
|
|
|
|
|
|
|
| 3 |
import torch
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
from openai import (
|
| 6 |
+
AzureOpenAI,
|
| 7 |
+
OpenAIError,
|
| 8 |
+
)
|
| 9 |
+
from sentence_transformers import (
|
| 10 |
+
SentenceTransformer,
|
| 11 |
+
util,
|
| 12 |
+
)
|
| 13 |
+
from transformers import pipeline
|
| 14 |
|
| 15 |
load_dotenv()
|
| 16 |
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
|
|
|
|
| 79 |
return UNKNOWN, 0.5 # Return UNKNOWN and 0.0 confidence if error
|
| 80 |
|
| 81 |
|
| 82 |
+
def predict_generation_model(text: str) -> tuple[str, float]:
|
| 83 |
"""
|
| 84 |
Predicts if text is generated by gpt-4o or gpt-4o-mini models.
|
| 85 |
Compare the input text against the paraphrased text by the models.
|
|
|
|
| 99 |
if similarity > best_similarity:
|
| 100 |
best_similarity = similarity
|
| 101 |
best_model = model
|
| 102 |
+
|
| 103 |
return best_model, best_similarity
|
| 104 |
|
| 105 |
|
|
|
|
| 130 |
return paraphrased_text
|
| 131 |
except OpenAIError as e: # Add exception handling
|
| 132 |
print(f"Error in AI model inference: {e}")
|
| 133 |
+
return None
|
| 134 |
+
|
| 135 |
+
|
| 136 |
def measure_text_similarity(text1: str, text2: str) -> float:
|
| 137 |
"""
|
| 138 |
Measure the similarity between two texts.
|
|
|
|
| 157 |
similarity = util.cos_sim(embeddings1, embeddings2).cpu().numpy()
|
| 158 |
print(similarity[0][0])
|
| 159 |
return similarity[0][0]
|
|
|
src/application/text/search_detection.py
CHANGED
|
@@ -75,23 +75,26 @@ def find_paragraph_source(text, text_index, sentences_df):
|
|
| 75 |
)
|
| 76 |
|
| 77 |
if aligned_sentence["paraphrase"] is False:
|
| 78 |
-
sentences_df.loc[text_index, "input"] = aligned_sentence[
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
return sentences_df, []
|
| 81 |
-
|
| 82 |
# assign values
|
| 83 |
columns = [
|
| 84 |
"input",
|
| 85 |
-
"source",
|
| 86 |
-
"label",
|
| 87 |
-
"similarity",
|
| 88 |
-
"paraphrase",
|
| 89 |
"url",
|
| 90 |
-
|
| 91 |
for c in columns:
|
| 92 |
if c in sentences_df.columns:
|
| 93 |
sentences_df.loc[text_index, c] = aligned_sentence[c]
|
| 94 |
-
|
| 95 |
|
| 96 |
for idx, _ in sentences_df.iterrows():
|
| 97 |
similarity = sentences_df.loc[idx, "similarity"]
|
|
@@ -106,12 +109,20 @@ def find_paragraph_source(text, text_index, sentences_df):
|
|
| 106 |
url,
|
| 107 |
)
|
| 108 |
|
| 109 |
-
if
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
return sentences_df, content.images
|
| 116 |
|
| 117 |
sentences_df.loc[text_index, "input"] = text[text_index]
|
|
@@ -266,7 +277,7 @@ def check_paraphrase(input_text, page_text, url):
|
|
| 266 |
|
| 267 |
label, is_paraphrased = determine_label(max_similarity)
|
| 268 |
best_matched_paragraph = page_paragraphs[max_sim_index]
|
| 269 |
-
|
| 270 |
alignment = {
|
| 271 |
"input": paragraph,
|
| 272 |
"source": best_matched_paragraph,
|
|
@@ -317,6 +328,7 @@ def check_human(alligned_sentences):
|
|
| 317 |
return True
|
| 318 |
return False
|
| 319 |
|
|
|
|
| 320 |
def determine_label(similarity):
|
| 321 |
if similarity >= PARAPHRASE_THRESHOLD_HUMAN:
|
| 322 |
return "HUMAN", True
|
|
|
|
| 75 |
)
|
| 76 |
|
| 77 |
if aligned_sentence["paraphrase"] is False:
|
| 78 |
+
sentences_df.loc[text_index, "input"] = aligned_sentence[
|
| 79 |
+
"input"
|
| 80 |
+
]
|
| 81 |
+
sentences_df.loc[text_index, "paraphrase"] = (
|
| 82 |
+
aligned_sentence["paraphrase"]
|
| 83 |
+
)
|
| 84 |
return sentences_df, []
|
| 85 |
+
|
| 86 |
# assign values
|
| 87 |
columns = [
|
| 88 |
"input",
|
| 89 |
+
"source",
|
| 90 |
+
"label",
|
| 91 |
+
"similarity",
|
| 92 |
+
"paraphrase",
|
| 93 |
"url",
|
| 94 |
+
]
|
| 95 |
for c in columns:
|
| 96 |
if c in sentences_df.columns:
|
| 97 |
sentences_df.loc[text_index, c] = aligned_sentence[c]
|
|
|
|
| 98 |
|
| 99 |
for idx, _ in sentences_df.iterrows():
|
| 100 |
similarity = sentences_df.loc[idx, "similarity"]
|
|
|
|
| 109 |
url,
|
| 110 |
)
|
| 111 |
|
| 112 |
+
if (
|
| 113 |
+
similarity is None
|
| 114 |
+
or aligned_sentence["similarity"] > similarity
|
| 115 |
+
):
|
| 116 |
+
columns = [
|
| 117 |
+
"input",
|
| 118 |
+
"source",
|
| 119 |
+
"label",
|
| 120 |
+
"similarity",
|
| 121 |
+
"url",
|
| 122 |
+
]
|
| 123 |
+
for c in columns:
|
| 124 |
+
if c in sentences_df.columns:
|
| 125 |
+
sentences_df.loc[idx, c] = aligned_sentence[c]
|
| 126 |
return sentences_df, content.images
|
| 127 |
|
| 128 |
sentences_df.loc[text_index, "input"] = text[text_index]
|
|
|
|
| 277 |
|
| 278 |
label, is_paraphrased = determine_label(max_similarity)
|
| 279 |
best_matched_paragraph = page_paragraphs[max_sim_index]
|
| 280 |
+
|
| 281 |
alignment = {
|
| 282 |
"input": paragraph,
|
| 283 |
"source": best_matched_paragraph,
|
|
|
|
| 328 |
return True
|
| 329 |
return False
|
| 330 |
|
| 331 |
+
|
| 332 |
def determine_label(similarity):
|
| 333 |
if similarity >= PARAPHRASE_THRESHOLD_HUMAN:
|
| 334 |
return "HUMAN", True
|
test.py
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
my_list = [0, 0]
|
| 2 |
-
print(my_list[-2])
|
|
|
|
| 1 |
my_list = [0, 0]
|
| 2 |
+
print(my_list[-2])
|