Spaces:
Paused
Paused
| import os | |
| from threading import Thread | |
| from typing import Iterator | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| from transformers import StoppingCriteria, StoppingCriteriaList, StopStringCriteria | |
| import subprocess | |
| import torch._dynamo | |
| torch._dynamo.config.suppress_errors = True | |
| MAX_MAX_NEW_TOKENS = 1024 | |
| DEFAULT_MAX_NEW_TOKENS = 512 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| DESCRIPTION = """\ | |
| # Hymba-1.5B-Instruct chat | |
| Feel free to chat with our model! More details: [Paper](https://arxiv.org/abs/2411.13676), [Model card](https://huggingface.co/nvidia/Hymba-1.5B-Instruct), [GitHub](https://github.com/NVlabs/hymba). | |
| """ | |
| model_id = "nvidia/Hymba-1.5B-Instruct" | |
| model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", trust_remote_code=True) | |
| model = model.cuda().to(torch.bfloat16) | |
| model.compile() | |
| tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) | |
| tokenizer.chat_template = "{{'<extra_id_0>System'}}{% for message in messages %}{% if message['role'] == 'system' %}{{'\n' + message['content'].strip()}}{% if tools or contexts %}{{'\n'}}{% endif %}{% endif %}{% endfor %}{% if tools %}{% for tool in tools %}{{ '\n<tool> ' + tool|tojson + ' </tool>' }}{% endfor %}{% endif %}{% if contexts %}{% if tools %}{{'\n'}}{% endif %}{% for context in contexts %}{{ '\n<context> ' + context.strip() + ' </context>' }}{% endfor %}{% endif %}{{'\n\n'}}{% for message in messages %}{% if message['role'] == 'user' %}{{ '<extra_id_1>User\n' + message['content'].strip() + '\n' }}{% elif message['role'] == 'assistant' %}{{ '<extra_id_1>Assistant\n' + message['content'].strip() + '\n' }}{% elif message['role'] == 'tool' %}{{ '<extra_id_1>Tool\n' + message['content'].strip() + '\n' }}{% endif %}{% endfor %}{%- if add_generation_prompt %}{{'<extra_id_1>Assistant\n'}}{%- endif %}" | |
| #tokenizer.use_default_system_prompt = False | |
| def generate( | |
| message: str, | |
| chat_history: list[dict], | |
| system_prompt: str = "", | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2, | |
| ) -> Iterator[str]: | |
| conversation = [] | |
| if system_prompt: | |
| conversation.append({"role": "system", "content": system_prompt}) | |
| conversation += chat_history | |
| conversation.append({"role": "user", "content": message}) | |
| input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt").to('cuda') | |
| stopping_criteria = StoppingCriteriaList([StopStringCriteria(tokenizer=tokenizer, stop_strings="</s>")]) | |
| if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
| input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
| gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
| input_ids = input_ids.to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=1.0, skip_prompt=True, skip_special_tokens=False) | |
| generate_kwargs = dict( | |
| {"input_ids": input_ids}, | |
| streamer=streamer, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=True, | |
| top_p=top_p, | |
| top_k=top_k, | |
| temperature=temperature, | |
| num_beams=1, | |
| use_cache = True, | |
| repetition_penalty=repetition_penalty, | |
| stopping_criteria = stopping_criteria, | |
| attention_mask = torch.ones_like(input_ids), # Add this | |
| position_ids = None, | |
| kv_last_layer = None, | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| outputs = [] | |
| for text in streamer: | |
| outputs.append(text) | |
| yield "".join(outputs) | |
| chat_interface = gr.ChatInterface( | |
| fn=generate, | |
| additional_inputs=[ | |
| # gr.Textbox(label="System prompt", lines=6, value="You are a helpful assistant. Your name is Hymba-1.5B-Instruct-8K. \ | |
| # You are a new family of small language models featuring a hybrid-head architecture that strategically integrates attention mechanisms with state space models (SSMs). \ | |
| # You are developed by Deep Learning Efficiency Research (DLER) team at NVIDIA Research. \ | |
| # The above is just a background context. You can answer any questions not limited to the above background context."), | |
| gr.Textbox(label="System prompt", lines=6, value="You are a helpful assistant. Your name is Hymba-1.5B-Instruct-8K. "), | |
| gr.Slider( | |
| label="Max new tokens", | |
| minimum=1, | |
| maximum=MAX_MAX_NEW_TOKENS, | |
| step=1, | |
| value=DEFAULT_MAX_NEW_TOKENS, | |
| ), | |
| gr.Slider( | |
| label="Temperature", | |
| minimum=0.1, | |
| maximum=4.0, | |
| step=0.1, | |
| value=0.6, | |
| ), | |
| gr.Slider( | |
| label="Top-p (nucleus sampling)", | |
| minimum=0.05, | |
| maximum=1.0, | |
| step=0.05, | |
| value=0.9, | |
| ), | |
| gr.Slider( | |
| label="Top-k", | |
| minimum=1, | |
| maximum=1000, | |
| step=1, | |
| value=50, | |
| ), | |
| gr.Slider( | |
| label="Repetition penalty", | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| value=1.2, | |
| ), | |
| ], | |
| stop_btn=True, | |
| examples=[ | |
| ["Hello there! How are you doing?"], | |
| ["Can you explain briefly to me what is the Python programming language?"], | |
| ["Explain the plot of Cinderella in a sentence."], | |
| ["How many hours does it take a man to eat a Helicopter?"], | |
| ["Write a 100-word article on 'Benefits of Open-Source in AI research'"], | |
| ], | |
| cache_examples=False, | |
| type="messages", | |
| ) | |
| with gr.Blocks(css_paths="style.css", fill_height=True) as demo: | |
| gr.Markdown(DESCRIPTION) | |
| # gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") | |
| chat_interface.render() | |
| # gr.Markdown(LICENSE) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch() |