Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,44 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
def greet(name):
|
| 4 |
-
|
|
|
|
|
|
|
| 5 |
|
| 6 |
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 7 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, StopStringCriteria, StoppingCriteriaList
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
# Load the tokenizer and model
|
| 7 |
+
repo_name = "nvidia/Hymba-1.5B-Instruct"
|
| 8 |
+
|
| 9 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_name, trust_remote_code=True)
|
| 10 |
+
model = AutoModelForCausalLM.from_pretrained(repo_name, trust_remote_code=True)
|
| 11 |
+
model = model.cuda().to(torch.bfloat16)
|
| 12 |
+
|
| 13 |
+
# Chat with Hymba
|
| 14 |
+
# prompt = input()
|
| 15 |
+
prompt = "Who are you?"
|
| 16 |
+
|
| 17 |
+
messages = [
|
| 18 |
+
{"role": "system", "content": "You are a helpful assistant."}
|
| 19 |
+
]
|
| 20 |
+
messages.append({"role": "user", "content": prompt})
|
| 21 |
+
|
| 22 |
+
# Apply chat template
|
| 23 |
+
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to('cuda')
|
| 24 |
+
stopping_criteria = StoppingCriteriaList([StopStringCriteria(tokenizer=tokenizer, stop_strings="</s>")])
|
| 25 |
+
outputs = model.generate(
|
| 26 |
+
tokenized_chat,
|
| 27 |
+
max_new_tokens=256,
|
| 28 |
+
do_sample=False,
|
| 29 |
+
temperature=0.7,
|
| 30 |
+
use_cache=True,
|
| 31 |
+
stopping_criteria=stopping_criteria
|
| 32 |
+
)
|
| 33 |
+
input_length = tokenized_chat.shape[1]
|
| 34 |
+
response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
def greet(name):
|
| 39 |
+
print(f"User: prompt")
|
| 40 |
+
print(f"Model response: {response}")
|
| 41 |
+
# return "Hello " + name + "!!"
|
| 42 |
|
| 43 |
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 44 |
demo.launch()
|