Spaces:
Runtime error
Runtime error
| import time | |
| import numpy as np | |
| import pandas as pd | |
| import torch | |
| import faiss | |
| from sklearn.preprocessing import normalize | |
| from transformers import AutoTokenizer, AutoModelForQuestionAnswering | |
| from sentence_transformers import SentenceTransformer | |
| import pickle | |
| import gradio as gr | |
| print(torch.cuda.is_available()) | |
| __all__ = [ | |
| "mdeberta", | |
| "wangchanberta-hyp", # Best model | |
| ] | |
| predict_method = [ | |
| "faiss", | |
| "faissWithModel", | |
| "cosineWithModel", | |
| "semanticSearchWithModel", | |
| ] | |
| DEFAULT_MODEL = 'wangchanberta-hyp' | |
| DEFAULT_SENTENCE_EMBEDDING_MODEL = 'intfloat/multilingual-e5-base' | |
| MODEL_DICT = { | |
| 'wangchanberta': 'powerpuf-bot/wangchanberta-th-wiki-qa_ref-params', | |
| 'wangchanberta-hyp': 'powerpuf-bot/wangchanberta-th-wiki-qa_hyp-params', | |
| 'mdeberta': 'powerpuf-bot/mdeberta-v3-th-wiki-qa_ref-params', | |
| 'mdeberta-hyp': 'powerpuf-bot/mdeberta-v3-th-wiki-qa_hyp-params', | |
| } | |
| DATA_PATH = 'models/dataset.xlsx' | |
| EMBEDDINGS_PATH = 'models/embeddings.pkl' | |
| class ChatbotModel: | |
| def __init__(self, model=DEFAULT_MODEL): | |
| self._chatbot = Chatbot() | |
| self._chatbot.load_data() | |
| self._chatbot.load_model(model) | |
| self._chatbot.load_embedding_model(DEFAULT_SENTENCE_EMBEDDING_MODEL) | |
| self._chatbot.set_vectors() | |
| self._chatbot.set_index() | |
| def chat(self, question): | |
| return self._chatbot.answer_question(question) | |
| class Chatbot: | |
| def __init__(self): | |
| # Initialize variables | |
| self.df = None | |
| self.test_df = None | |
| self.model = None | |
| self.model_name = None | |
| self.tokenizer = None | |
| self.embedding_model = None | |
| self.vectors = None | |
| self.index = None | |
| self.k = 1 # top k most similar | |
| def load_data(self, path: str = DATA_PATH): | |
| self.df = pd.read_excel(path, sheet_name='Default') | |
| self.df['Context'] = pd.read_excel(path, sheet_name='mdeberta')['Context'] | |
| def load_model(self, model_name: str = DEFAULT_MODEL): | |
| self.model = AutoModelForQuestionAnswering.from_pretrained(MODEL_DICT[model_name]) | |
| self.tokenizer = AutoTokenizer.from_pretrained(MODEL_DICT[model_name]) | |
| self.model_name = model_name | |
| def load_embedding_model(self, model_name: str = DEFAULT_SENTENCE_EMBEDDING_MODEL): | |
| if torch.cuda.is_available(): | |
| self.embedding_model = SentenceTransformer(model_name, device='cuda') | |
| else: | |
| self.embedding_model = SentenceTransformer(model_name) | |
| def set_vectors(self): | |
| self.vectors = self.prepare_sentences_vector(self.load_embeddings(EMBEDDINGS_PATH)) | |
| def set_index(self): | |
| if torch.cuda.is_available(): | |
| res = faiss.StandardGpuResources() | |
| self.index = faiss.IndexFlatL2(self.vectors.shape[1]) | |
| gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, self.index) | |
| gpu_index_flat.add(self.vectors) | |
| self.index = gpu_index_flat | |
| else: | |
| self.index = faiss.IndexFlatL2(self.vectors.shape[1]) | |
| self.index.add(self.vectors) | |
| def get_embeddings(self, text_list): | |
| return self.embedding_model.encode(text_list) | |
| def prepare_sentences_vector(self, encoded_list): | |
| encoded_list = [i.reshape(1, -1) for i in encoded_list] | |
| encoded_list = np.vstack(encoded_list).astype('float32') | |
| encoded_list = normalize(encoded_list) | |
| return encoded_list | |
| def store_embeddings(self, embeddings): | |
| with open('models/embeddings.pkl', "wb") as fOut: | |
| pickle.dump({'sentences': self.df['Question'], 'embeddings': embeddings}, fOut, protocol=pickle.HIGHEST_PROTOCOL) | |
| def load_embeddings(self, file_path): | |
| with open(file_path, "rb") as fIn: | |
| stored_data = pickle.load(fIn) | |
| stored_sentences = stored_data['sentences'] | |
| stored_embeddings = stored_data['embeddings'] | |
| return stored_embeddings | |
| def model_pipeline(self, question, similar_context): | |
| inputs = self.tokenizer(question, similar_context, return_tensors="pt") | |
| with torch.no_grad(): | |
| outputs = self.model(**inputs) | |
| answer_start_index = outputs.start_logits.argmax() | |
| answer_end_index = outputs.end_logits.argmax() | |
| predict_answer_tokens = inputs.input_ids[0, answer_start_index: answer_end_index + 1] | |
| Answer = self.tokenizer.decode(predict_answer_tokens) | |
| return Answer | |
| def faiss_search(self, question_vector): | |
| distances, indices = self.index.search(question_vector, self.k) | |
| similar_questions = [self.df['Question'][indices[0][i]] for i in range(self.k)] | |
| similar_contexts = [self.df['Context'][indices[0][i]] for i in range(self.k)] | |
| return similar_questions, similar_contexts, distances, indices | |
| def predict(self, message): | |
| message = message.strip() | |
| question_vector = self.get_embeddings(message) | |
| question_vector = self.prepare_sentences_vector([question_vector]) | |
| similar_questions, similar_contexts, distances, indices = self.faiss_search(question_vector) | |
| context = similar_contexts[0] | |
| Answer = self.model_pipeline(similar_questions[0], context) | |
| return Answer | |
| if __name__ == "__main__": | |
| bot = ChatbotModel() | |
| def chat_interface(question, history): | |
| response = bot._chatbot.predict(question) | |
| return response | |
| EXAMPLE = ["หลิน ไห่เฟิง มีชื่อเรียกอีกชื่อว่าอะไร" , "ใครเป็นผู้ตั้งสภาเศรษฐกิจโลกขึ้นในปี พ.ศ. 2514 โดยทุกปีจะมีการประชุมที่ประเทศสวิตเซอร์แลนด์", "โปรดิวเซอร์ของอัลบั้มตลอดกาล ของวงคีรีบูนคือใคร", "สกุลเดิมของหม่อมครูนุ่ม นวรัตน ณ อยุธยา คืออะไร"] | |
| demo = gr.ChatInterface(fn=chat_interface, examples=EXAMPLE, title="CE66-04: Thai Question Answering System by using Deep Learning") | |
| demo.launch() | |