Spaces:
Runtime error
Runtime error
SirinootKK
commited on
Commit
Β·
5f7b796
1
Parent(s):
4b72dd5
init
Browse files- app.py +224 -0
- requirements.txt +311 -0
app.py
ADDED
|
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""gradio_wangchanberta
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colaboratory.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1Kw2k1oymhq4ZAcy4oBYOlIg4bBU-HlVr
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
#@title scirpts
|
| 11 |
+
import time
|
| 12 |
+
import numpy as np
|
| 13 |
+
import pandas as pd
|
| 14 |
+
import torch
|
| 15 |
+
import faiss
|
| 16 |
+
from sklearn.preprocessing import normalize
|
| 17 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
| 18 |
+
from sentence_transformers import SentenceTransformer,util
|
| 19 |
+
from pythainlp import Tokenizer
|
| 20 |
+
import pickle
|
| 21 |
+
import evaluate
|
| 22 |
+
from sklearn.metrics.pairwise import cosine_similarity,euclidean_distances
|
| 23 |
+
|
| 24 |
+
print(torch.cuda.is_available())
|
| 25 |
+
|
| 26 |
+
__all__ = [
|
| 27 |
+
"mdeberta",
|
| 28 |
+
"wangchanberta-hyp", # Best model
|
| 29 |
+
]
|
| 30 |
+
|
| 31 |
+
predict_method = [
|
| 32 |
+
"faiss",
|
| 33 |
+
"faissWithModel",
|
| 34 |
+
"cosineWithModel",
|
| 35 |
+
"semanticSearchWithModel",
|
| 36 |
+
]
|
| 37 |
+
|
| 38 |
+
DEFAULT_MODEL='wangchanberta-hyp'
|
| 39 |
+
DEFAULT_SENTENCE_EMBEDDING_MODEL='intfloat/multilingual-e5-base'
|
| 40 |
+
|
| 41 |
+
MODEL_DICT = {
|
| 42 |
+
'wangchanberta': 'Chananchida/wangchanberta-th-wiki-qa_ref-params',
|
| 43 |
+
'wangchanberta-hyp': 'Chananchida/wangchanberta-th-wiki-qa_hyp-params',
|
| 44 |
+
'mdeberta': 'Chananchida/mdeberta-v3-th-wiki-qa_ref-params',
|
| 45 |
+
'mdeberta-hyp': 'Chananchida/mdeberta-v3-th-wiki-qa_hyp-params',
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
DATA_PATH='models/dataset.xlsx'
|
| 49 |
+
EMBEDDINGS_PATH='models/embeddings.pkl'
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class ChatbotModel:
|
| 53 |
+
def __init__(self, model=DEFAULT_MODEL):
|
| 54 |
+
self._chatbot = Chatbot()
|
| 55 |
+
self._chatbot.load_data()
|
| 56 |
+
self._chatbot.load_model(model)
|
| 57 |
+
self._chatbot.load_embedding_model(DEFAULT_SENTENCE_EMBEDDING_MODEL)
|
| 58 |
+
self._chatbot.set_vectors()
|
| 59 |
+
self._chatbot.set_index()
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def chat(self, question):
|
| 63 |
+
return self._chatbot.answer_question(question)
|
| 64 |
+
|
| 65 |
+
def eval(self,model,predict_method):
|
| 66 |
+
return self._chatbot.eval(model_name=model,predict_method=predict_method)
|
| 67 |
+
|
| 68 |
+
class Chatbot:
|
| 69 |
+
def __init__(self):
|
| 70 |
+
# Initialize variables
|
| 71 |
+
self.df = None
|
| 72 |
+
self.test_df = None
|
| 73 |
+
self.model = None
|
| 74 |
+
self.model_name = None
|
| 75 |
+
self.tokenizer = None
|
| 76 |
+
self.embedding_model = None
|
| 77 |
+
self.vectors = None
|
| 78 |
+
self.index = None
|
| 79 |
+
self.k = 1 # top k most similar
|
| 80 |
+
|
| 81 |
+
def load_data(self, path: str = DATA_PATH):
|
| 82 |
+
self.df = pd.read_excel(path, sheet_name='Default')
|
| 83 |
+
self.df['Context'] = pd.read_excel(path, sheet_name='mdeberta')['Context']
|
| 84 |
+
print('Load data done')
|
| 85 |
+
|
| 86 |
+
def load_model(self, model_name: str = DEFAULT_MODEL):
|
| 87 |
+
self.model = AutoModelForQuestionAnswering.from_pretrained(MODEL_DICT[model_name])
|
| 88 |
+
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_DICT[model_name])
|
| 89 |
+
self.model_name = model_name
|
| 90 |
+
print('Load model done')
|
| 91 |
+
|
| 92 |
+
def load_embedding_model(self, model_name: str = DEFAULT_SENTENCE_EMBEDDING_MODEL):
|
| 93 |
+
if torch.cuda.is_available(): # Check if GPU is available
|
| 94 |
+
self.embedding_model = SentenceTransformer(model_name, device='cpu')
|
| 95 |
+
else: self.embedding_model = SentenceTransformer(model_name)
|
| 96 |
+
print('Load sentence embedding model done')
|
| 97 |
+
|
| 98 |
+
def set_vectors(self):
|
| 99 |
+
self.vectors = self.prepare_sentences_vector(self.load_embeddings(EMBEDDINGS_PATH))
|
| 100 |
+
|
| 101 |
+
def set_index(self):
|
| 102 |
+
if torch.cuda.is_available(): # Check if GPU is available
|
| 103 |
+
res = faiss.StandardGpuResources()
|
| 104 |
+
self.index = faiss.IndexFlatL2(self.vectors.shape[1])
|
| 105 |
+
gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, self.index)
|
| 106 |
+
gpu_index_flat.add(self.vectors)
|
| 107 |
+
self.index = gpu_index_flat
|
| 108 |
+
else: # If GPU is not available, use CPU-based Faiss index
|
| 109 |
+
self.index = faiss.IndexFlatL2(self.vectors.shape[1])
|
| 110 |
+
self.index.add(self.vectors)
|
| 111 |
+
|
| 112 |
+
def get_embeddings(self, text_list):
|
| 113 |
+
return self.embedding_model.encode(text_list)
|
| 114 |
+
|
| 115 |
+
def prepare_sentences_vector(self, encoded_list):
|
| 116 |
+
encoded_list = [i.reshape(1, -1) for i in encoded_list]
|
| 117 |
+
encoded_list = np.vstack(encoded_list).astype('float32')
|
| 118 |
+
encoded_list = normalize(encoded_list)
|
| 119 |
+
return encoded_list
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def store_embeddings(self, embeddings):
|
| 123 |
+
with open('models/embeddings.pkl', "wb") as fOut:
|
| 124 |
+
pickle.dump({'sentences': self.df['Question'], 'embeddings': embeddings}, fOut, protocol=pickle.HIGHEST_PROTOCOL)
|
| 125 |
+
print('Store embeddings done')
|
| 126 |
+
|
| 127 |
+
def load_embeddings(self, file_path):
|
| 128 |
+
with open(file_path, "rb") as fIn:
|
| 129 |
+
stored_data = pickle.load(fIn)
|
| 130 |
+
stored_sentences = stored_data['sentences']
|
| 131 |
+
stored_embeddings = stored_data['embeddings']
|
| 132 |
+
print('Load (questions) embeddings done')
|
| 133 |
+
return stored_embeddings
|
| 134 |
+
|
| 135 |
+
def model_pipeline(self, question, similar_context):
|
| 136 |
+
inputs = self.tokenizer(question, similar_context, return_tensors="pt")
|
| 137 |
+
with torch.no_grad():
|
| 138 |
+
outputs = self.model(**inputs)
|
| 139 |
+
answer_start_index = outputs.start_logits.argmax()
|
| 140 |
+
answer_end_index = outputs.end_logits.argmax()
|
| 141 |
+
predict_answer_tokens = inputs.input_ids[0, answer_start_index: answer_end_index + 1]
|
| 142 |
+
Answer = self.tokenizer.decode(predict_answer_tokens)
|
| 143 |
+
return Answer
|
| 144 |
+
|
| 145 |
+
def faiss_search(self, question_vector):
|
| 146 |
+
distances, indices = self.index.search(question_vector, self.k)
|
| 147 |
+
similar_questions = [self.df['Question'][indices[0][i]] for i in range(self.k)]
|
| 148 |
+
similar_contexts = [self.df['Context'][indices[0][i]] for i in range(self.k)]
|
| 149 |
+
return similar_questions, similar_contexts, distances, indices
|
| 150 |
+
|
| 151 |
+
def predict_faiss(self, message):
|
| 152 |
+
message = message.strip()
|
| 153 |
+
question_vector = self.get_embeddings(message)
|
| 154 |
+
question_vector = self.prepare_sentences_vector([question_vector])
|
| 155 |
+
similar_questions, similar_contexts, distances, indices = self.faiss_search(question_vector)
|
| 156 |
+
Answers = [self.df['Answer'][i] for i in indices[0]]
|
| 157 |
+
Answer = Answers[0]
|
| 158 |
+
|
| 159 |
+
return Answer
|
| 160 |
+
|
| 161 |
+
# Function to predict using BERT embedding
|
| 162 |
+
def predict_bert_embedding(self,message):
|
| 163 |
+
message = message.strip()
|
| 164 |
+
question_vector = self.get_embeddings(message)
|
| 165 |
+
question_vector=self.prepare_sentences_vector([question_vector])
|
| 166 |
+
similar_questions, similar_contexts, distances,indices = self.faiss_search(question_vector)
|
| 167 |
+
Answer = self.model_pipeline(similar_questions, similar_contexts)
|
| 168 |
+
return Answer
|
| 169 |
+
|
| 170 |
+
# def predict_semantic_search(self,message,corpus_embeddings):
|
| 171 |
+
# message = message.strip()
|
| 172 |
+
# query_embedding = self.embedding_model.encode(message, convert_to_tensor=True)
|
| 173 |
+
# query_embedding = query_embedding.to('cpu')
|
| 174 |
+
# hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=1)
|
| 175 |
+
# hit = hits[0][0]
|
| 176 |
+
# context=self.df['Context'][hit['corpus_id']]
|
| 177 |
+
# score="{:.4f})".format(hit['score'])
|
| 178 |
+
# Answer = self.model_pipeline(message, context)
|
| 179 |
+
# return Answer
|
| 180 |
+
def predict_semantic_search(self, message):
|
| 181 |
+
message = message.strip()
|
| 182 |
+
query_embedding = self.embedding_model.encode([message], convert_to_tensor=True)[0] # Fix here
|
| 183 |
+
query_embedding = query_embedding.to('cpu')
|
| 184 |
+
corpus_embeddings = self.embedding_model.encode(self.df['Question'].tolist(), convert_to_tensor=True) # Fix here
|
| 185 |
+
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=1)
|
| 186 |
+
hit = hits[0][0]
|
| 187 |
+
context = self.df['Context'][hit['corpus_id']]
|
| 188 |
+
score = "{:.4f})".format(hit['score'])
|
| 189 |
+
Answer = self.model_pipeline(message, context)
|
| 190 |
+
return Answer
|
| 191 |
+
|
| 192 |
+
def predict_without_faiss(self,message):
|
| 193 |
+
MostSimilarContext = ""
|
| 194 |
+
min_distance = 1000
|
| 195 |
+
message = message.strip(' \t\n')
|
| 196 |
+
question_vector = self.get_embeddings([message])
|
| 197 |
+
question_vector=self.prepare_sentences_vector(question_vector)
|
| 198 |
+
for j, _question_vector in enumerate(self.vectors):
|
| 199 |
+
distance = euclidean_distances(question_vector, _question_vector.reshape(1, -1))[0][0]
|
| 200 |
+
if distance < min_distance:
|
| 201 |
+
min_distance = distance
|
| 202 |
+
MostSimilarContext = self.df['Context'][j]
|
| 203 |
+
similar_question = self.df['Question'][j]
|
| 204 |
+
if distance <= 0.02469331026:
|
| 205 |
+
break
|
| 206 |
+
predict_answer = self.model_pipeline(message, MostSimilarContext)
|
| 207 |
+
Answer = predict_answer.strip().replace("<unk>","@")
|
| 208 |
+
return Answer
|
| 209 |
+
|
| 210 |
+
bot = ChatbotModel()
|
| 211 |
+
|
| 212 |
+
"""#Gradio"""
|
| 213 |
+
|
| 214 |
+
import gradio as gr
|
| 215 |
+
|
| 216 |
+
EXAMPLE_PATH = ["ΰΈ«ΰΈ₯ΰΈ΄ΰΈ ΰΉΰΈ«ΰΉΰΉΰΈΰΈ΄ΰΈ ΰΈ‘ΰΈ΅ΰΈΰΈ·ΰΉΰΈΰΉΰΈ£ΰΈ΅ΰΈ’ΰΈΰΈΰΈ΅ΰΈΰΈΰΈ·ΰΉΰΈΰΈ§ΰΉΰΈ²ΰΈΰΈ°ΰΉΰΈ£" , "ΰΉΰΈΰΈ£ΰΉΰΈΰΉΰΈΰΈΰΈΉΰΉΰΈΰΈ±ΰΉΰΈΰΈͺΰΈ ΰΈ²ΰΉΰΈ¨ΰΈ£ΰΈ©ΰΈΰΈΰΈ΄ΰΈΰΉΰΈ₯ΰΈΰΈΰΈΆΰΉΰΈΰΉΰΈΰΈΰΈ΅ ΰΈ.ΰΈ¨. 2514 ΰΉΰΈΰΈ’ΰΈΰΈΈΰΈΰΈΰΈ΅ΰΈΰΈ°ΰΈ‘ΰΈ΅ΰΈΰΈ²ΰΈ£ΰΈΰΈ£ΰΈ°ΰΈΰΈΈΰΈ‘ΰΈΰΈ΅ΰΉΰΈΰΈ£ΰΈ°ΰΉΰΈΰΈ¨ΰΈͺΰΈ§ΰΈ΄ΰΈΰΉΰΈΰΈΰΈ£ΰΉΰΉΰΈ₯ΰΈΰΈΰΉ", "ΰΉΰΈΰΈ£ΰΈΰΈ΄ΰΈ§ΰΉΰΈΰΈΰΈ£ΰΉΰΈΰΈΰΈΰΈΰΈ±ΰΈ₯ΰΈΰΈ±ΰΉΰΈ‘ΰΈΰΈ₯ΰΈΰΈΰΈΰΈ²ΰΈ₯ ΰΈΰΈΰΈΰΈ§ΰΈΰΈΰΈ΅ΰΈ£ΰΈ΅ΰΈΰΈΉΰΈΰΈΰΈ·ΰΈΰΉΰΈΰΈ£", "ΰΈͺΰΈΰΈΈΰΈ₯ΰΉΰΈΰΈ΄ΰΈ‘ΰΈΰΈΰΈΰΈ«ΰΈ‘ΰΉΰΈΰΈ‘ΰΈΰΈ£ΰΈΉΰΈΰΈΈΰΉΰΈ‘ ΰΈΰΈ§ΰΈ£ΰΈ±ΰΈΰΈ ΰΈ ΰΈΰΈ’ΰΈΈΰΈΰΈ’ΰΈ² ΰΈΰΈ·ΰΈΰΈΰΈ°ΰΉΰΈ£"]
|
| 217 |
+
|
| 218 |
+
demoFaiss = gr.Interface(fn=bot._chatbot.predict_faiss, inputs="text", outputs="text", examples=EXAMPLE_PATH, title="TH wiki (just Faiss)")
|
| 219 |
+
demoBert = gr.Interface(fn=bot._chatbot.predict_bert_embedding, inputs="text", outputs="text",examples=EXAMPLE_PATH, title="TH wiki (Faiss & Model)")
|
| 220 |
+
demoSemantic = gr.Interface(fn=bot._chatbot.predict_semantic_search, inputs="text", outputs="text",examples=EXAMPLE_PATH, title="TH wiki (Semantic Search & Model)")
|
| 221 |
+
demoWithoutFiss = gr.Interface(fn=bot._chatbot.predict_without_faiss, inputs="text", outputs="text",examples=EXAMPLE_PATH, title="TH wiki (just Model)")
|
| 222 |
+
|
| 223 |
+
demo = gr.TabbedInterface([demoFaiss, demoWithoutFiss, demoBert, demoSemantic], ["Faiss", "Model", "Faiss & Model", "Semantic Search & Model"])
|
| 224 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,311 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
absl-py==2.1.0
|
| 2 |
+
accelerate==0.26.1
|
| 3 |
+
aiohttp==3.9.1
|
| 4 |
+
aiosignal==1.3.1
|
| 5 |
+
async-timeout==4.0.3
|
| 6 |
+
attrs==23.2.0
|
| 7 |
+
bert-score==0.3.13
|
| 8 |
+
certifi==2023.11.17
|
| 9 |
+
charset-normalizer==3.3.2
|
| 10 |
+
click==8.1.7
|
| 11 |
+
colorama==0.4.6
|
| 12 |
+
contourpy==1.2.0
|
| 13 |
+
cycler==0.12.1
|
| 14 |
+
datasets==2.16.1
|
| 15 |
+
dill==0.3.7
|
| 16 |
+
evaluate==0.4.1
|
| 17 |
+
faiss-cpu==1.7.4
|
| 18 |
+
filelock==3.13.1
|
| 19 |
+
fonttools==4.47.2
|
| 20 |
+
frozenlist==1.4.1
|
| 21 |
+
fsspec==2023.10.0
|
| 22 |
+
huggingface-hub==0.20.2
|
| 23 |
+
idna==3.6
|
| 24 |
+
Jinja2==3.1.3
|
| 25 |
+
joblib==1.3.2
|
| 26 |
+
kiwisolver==1.4.5
|
| 27 |
+
MarkupSafe==2.1.4
|
| 28 |
+
matplotlib==3.8.2
|
| 29 |
+
mpmath==1.3.0
|
| 30 |
+
multidict==6.0.4
|
| 31 |
+
multiprocess==0.70.15
|
| 32 |
+
networkx==3.2.1
|
| 33 |
+
nltk==3.8.1
|
| 34 |
+
numpy==1.26.3
|
| 35 |
+
packaging==23.2
|
| 36 |
+
pandas==2.2.0
|
| 37 |
+
pillow==10.2.0
|
| 38 |
+
psutil==5.9.8
|
| 39 |
+
pyarrow==14.0.2
|
| 40 |
+
pyarrow-hotfix==0.6
|
| 41 |
+
pyparsing==3.1.1
|
| 42 |
+
pythainlp==4.0.2
|
| 43 |
+
python-dateutil==2.8.2
|
| 44 |
+
pytz==2023.3.post1
|
| 45 |
+
PyYAML==6.0.1
|
| 46 |
+
regex==2023.12.25
|
| 47 |
+
requests==2.31.0
|
| 48 |
+
responses==0.18.0
|
| 49 |
+
rouge_score==0.1.2
|
| 50 |
+
safetensors==0.4.1
|
| 51 |
+
scikit-learn==1.4.0
|
| 52 |
+
scipy==1.11.4
|
| 53 |
+
sentence-transformers==2.2.2
|
| 54 |
+
sentencepiece==0.1.99
|
| 55 |
+
six==1.16.0
|
| 56 |
+
sympy==1.12
|
| 57 |
+
threadpoolctl==3.2.0
|
| 58 |
+
tokenizers==0.15.0
|
| 59 |
+
torch==2.1.2
|
| 60 |
+
torchvision==0.16.2
|
| 61 |
+
tqdm==4.66.1
|
| 62 |
+
transformers==4.36.2
|
| 63 |
+
typing_extensions==4.9.0
|
| 64 |
+
tzdata==2023.4
|
| 65 |
+
urllib3==2.1.0
|
| 66 |
+
xxhash==3.4.1
|
| 67 |
+
yarl==1.9.4
|
| 68 |
+
absl-py==2.1.0
|
| 69 |
+
accelerate==0.26.1
|
| 70 |
+
aiohttp==3.9.1
|
| 71 |
+
aiosignal==1.3.1
|
| 72 |
+
async-timeout==4.0.3
|
| 73 |
+
attrs==23.2.0
|
| 74 |
+
bert-score==0.3.13
|
| 75 |
+
certifi==2023.11.17
|
| 76 |
+
charset-normalizer==3.3.2
|
| 77 |
+
click==8.1.7
|
| 78 |
+
colorama==0.4.6
|
| 79 |
+
contourpy==1.2.0
|
| 80 |
+
cycler==0.12.1
|
| 81 |
+
datasets==2.16.1
|
| 82 |
+
dill==0.3.7
|
| 83 |
+
evaluate==0.4.1
|
| 84 |
+
faiss-cpu==1.7.4
|
| 85 |
+
filelock==3.13.1
|
| 86 |
+
fonttools==4.47.2
|
| 87 |
+
frozenlist==1.4.1
|
| 88 |
+
fsspec==2023.10.0
|
| 89 |
+
huggingface-cli==0.1
|
| 90 |
+
huggingface-hub==0.20.2
|
| 91 |
+
idna==3.6
|
| 92 |
+
Jinja2==3.1.3
|
| 93 |
+
joblib==1.3.2
|
| 94 |
+
kiwisolver==1.4.5
|
| 95 |
+
MarkupSafe==2.1.4
|
| 96 |
+
matplotlib==3.8.2
|
| 97 |
+
mpmath==1.3.0
|
| 98 |
+
multidict==6.0.4
|
| 99 |
+
multiprocess==0.70.15
|
| 100 |
+
networkx==3.2.1
|
| 101 |
+
nltk==3.8.1
|
| 102 |
+
numpy==1.26.3
|
| 103 |
+
packaging==23.2
|
| 104 |
+
pandas==2.2.0
|
| 105 |
+
pillow==10.2.0
|
| 106 |
+
psutil==5.9.8
|
| 107 |
+
pyarrow==14.0.2
|
| 108 |
+
pyarrow-hotfix==0.6
|
| 109 |
+
pyparsing==3.1.1
|
| 110 |
+
pythainlp==4.0.2
|
| 111 |
+
python-dateutil==2.8.2
|
| 112 |
+
pytz==2023.3.post1
|
| 113 |
+
PyYAML==6.0.1
|
| 114 |
+
regex==2023.12.25
|
| 115 |
+
requests==2.31.0
|
| 116 |
+
responses==0.18.0
|
| 117 |
+
rouge_score==0.1.2
|
| 118 |
+
safetensors==0.4.1
|
| 119 |
+
scikit-learn==1.4.0
|
| 120 |
+
scipy==1.11.4
|
| 121 |
+
sentence-transformers==2.2.2
|
| 122 |
+
sentencepiece==0.1.99
|
| 123 |
+
six==1.16.0
|
| 124 |
+
sympy==1.12
|
| 125 |
+
threadpoolctl==3.2.0
|
| 126 |
+
tokenizers==0.15.0
|
| 127 |
+
torch==2.1.2
|
| 128 |
+
torchvision==0.16.2
|
| 129 |
+
tqdm==4.66.1
|
| 130 |
+
transformers==4.36.2
|
| 131 |
+
typing_extensions==4.9.0
|
| 132 |
+
tzdata==2023.4
|
| 133 |
+
urllib3==2.1.0
|
| 134 |
+
xxhash==3.4.1
|
| 135 |
+
yarl==1.9.4
|
| 136 |
+
absl-py==2.1.0
|
| 137 |
+
accelerate==0.26.1
|
| 138 |
+
aiohttp==3.9.1
|
| 139 |
+
aiosignal==1.3.1
|
| 140 |
+
async-timeout==4.0.3
|
| 141 |
+
attrs==23.2.0
|
| 142 |
+
bert-score==0.3.13
|
| 143 |
+
certifi==2023.11.17
|
| 144 |
+
charset-normalizer==3.3.2
|
| 145 |
+
click==8.1.7
|
| 146 |
+
colorama==0.4.6
|
| 147 |
+
contourpy==1.2.0
|
| 148 |
+
cycler==0.12.1
|
| 149 |
+
datasets==2.16.1
|
| 150 |
+
dill==0.3.7
|
| 151 |
+
et-xmlfile==1.1.0
|
| 152 |
+
evaluate==0.4.1
|
| 153 |
+
faiss-cpu==1.7.4
|
| 154 |
+
filelock==3.13.1
|
| 155 |
+
fonttools==4.47.2
|
| 156 |
+
frozenlist==1.4.1
|
| 157 |
+
fsspec==2023.10.0
|
| 158 |
+
huggingface-cli==0.1
|
| 159 |
+
huggingface-hub==0.20.2
|
| 160 |
+
idna==3.6
|
| 161 |
+
Jinja2==3.1.3
|
| 162 |
+
joblib==1.3.2
|
| 163 |
+
kiwisolver==1.4.5
|
| 164 |
+
MarkupSafe==2.1.4
|
| 165 |
+
matplotlib==3.8.2
|
| 166 |
+
mpmath==1.3.0
|
| 167 |
+
multidict==6.0.4
|
| 168 |
+
multiprocess==0.70.15
|
| 169 |
+
networkx==3.2.1
|
| 170 |
+
nltk==3.8.1
|
| 171 |
+
numpy==1.26.3
|
| 172 |
+
openpyxl==3.1.2
|
| 173 |
+
packaging==23.2
|
| 174 |
+
pandas==2.2.0
|
| 175 |
+
pillow==10.2.0
|
| 176 |
+
psutil==5.9.8
|
| 177 |
+
pyarrow==14.0.2
|
| 178 |
+
pyarrow-hotfix==0.6
|
| 179 |
+
pyparsing==3.1.1
|
| 180 |
+
pythainlp==4.0.2
|
| 181 |
+
python-dateutil==2.8.2
|
| 182 |
+
pytz==2023.3.post1
|
| 183 |
+
PyYAML==6.0.1
|
| 184 |
+
regex==2023.12.25
|
| 185 |
+
requests==2.31.0
|
| 186 |
+
responses==0.18.0
|
| 187 |
+
rouge_score==0.1.2
|
| 188 |
+
safetensors==0.4.1
|
| 189 |
+
scikit-learn==1.4.0
|
| 190 |
+
scipy==1.11.4
|
| 191 |
+
sentence-transformers==2.2.2
|
| 192 |
+
sentencepiece==0.1.99
|
| 193 |
+
six==1.16.0
|
| 194 |
+
sympy==1.12
|
| 195 |
+
threadpoolctl==3.2.0
|
| 196 |
+
tokenizers==0.15.0
|
| 197 |
+
torch==2.1.2
|
| 198 |
+
torchvision==0.16.2
|
| 199 |
+
tqdm==4.66.1
|
| 200 |
+
transformers==4.36.2
|
| 201 |
+
typing_extensions==4.9.0
|
| 202 |
+
tzdata==2023.4
|
| 203 |
+
urllib3==2.1.0
|
| 204 |
+
xxhash==3.4.1
|
| 205 |
+
yarl==1.9.4
|
| 206 |
+
absl-py==2.1.0
|
| 207 |
+
accelerate==0.26.1
|
| 208 |
+
aiofiles==23.2.1
|
| 209 |
+
aiohttp==3.9.1
|
| 210 |
+
aiosignal==1.3.1
|
| 211 |
+
altair==5.2.0
|
| 212 |
+
annotated-types==0.6.0
|
| 213 |
+
anyio==4.2.0
|
| 214 |
+
async-timeout==4.0.3
|
| 215 |
+
attrs==23.2.0
|
| 216 |
+
bert-score==0.3.13
|
| 217 |
+
certifi==2023.11.17
|
| 218 |
+
charset-normalizer==3.3.2
|
| 219 |
+
click==8.1.7
|
| 220 |
+
colorama==0.4.6
|
| 221 |
+
contourpy==1.2.0
|
| 222 |
+
cycler==0.12.1
|
| 223 |
+
datasets==2.16.1
|
| 224 |
+
dill==0.3.7
|
| 225 |
+
et-xmlfile==1.1.0
|
| 226 |
+
evaluate==0.4.1
|
| 227 |
+
exceptiongroup==1.2.0
|
| 228 |
+
faiss-cpu==1.7.4
|
| 229 |
+
fastapi==0.109.0
|
| 230 |
+
ffmpy==0.3.1
|
| 231 |
+
filelock==3.13.1
|
| 232 |
+
fonttools==4.47.2
|
| 233 |
+
frozenlist==1.4.1
|
| 234 |
+
fsspec==2023.10.0
|
| 235 |
+
gradio==4.15.0
|
| 236 |
+
gradio_client==0.8.1
|
| 237 |
+
h11==0.14.0
|
| 238 |
+
httpcore==1.0.2
|
| 239 |
+
httpx==0.26.0
|
| 240 |
+
huggingface-cli==0.1
|
| 241 |
+
huggingface-hub==0.20.2
|
| 242 |
+
idna==3.6
|
| 243 |
+
importlib-resources==6.1.1
|
| 244 |
+
Jinja2==3.1.3
|
| 245 |
+
joblib==1.3.2
|
| 246 |
+
jsonschema==4.21.1
|
| 247 |
+
jsonschema-specifications==2023.12.1
|
| 248 |
+
kiwisolver==1.4.5
|
| 249 |
+
markdown-it-py==3.0.0
|
| 250 |
+
MarkupSafe==2.1.4
|
| 251 |
+
matplotlib==3.8.2
|
| 252 |
+
mdurl==0.1.2
|
| 253 |
+
mpmath==1.3.0
|
| 254 |
+
multidict==6.0.4
|
| 255 |
+
multiprocess==0.70.15
|
| 256 |
+
networkx==3.2.1
|
| 257 |
+
nltk==3.8.1
|
| 258 |
+
numpy==1.26.3
|
| 259 |
+
openpyxl==3.1.2
|
| 260 |
+
orjson==3.9.12
|
| 261 |
+
packaging==23.2
|
| 262 |
+
pandas==2.2.0
|
| 263 |
+
pillow==10.2.0
|
| 264 |
+
psutil==5.9.8
|
| 265 |
+
pyarrow==14.0.2
|
| 266 |
+
pyarrow-hotfix==0.6
|
| 267 |
+
pydantic==2.5.3
|
| 268 |
+
pydantic_core==2.14.6
|
| 269 |
+
pydub==0.25.1
|
| 270 |
+
Pygments==2.17.2
|
| 271 |
+
pyparsing==3.1.1
|
| 272 |
+
pythainlp==4.0.2
|
| 273 |
+
python-dateutil==2.8.2
|
| 274 |
+
python-multipart==0.0.6
|
| 275 |
+
pytz==2023.3.post1
|
| 276 |
+
PyYAML==6.0.1
|
| 277 |
+
referencing==0.32.1
|
| 278 |
+
regex==2023.12.25
|
| 279 |
+
requests==2.31.0
|
| 280 |
+
responses==0.18.0
|
| 281 |
+
rich==13.7.0
|
| 282 |
+
rouge_score==0.1.2
|
| 283 |
+
rpds-py==0.17.1
|
| 284 |
+
ruff==0.1.14
|
| 285 |
+
safetensors==0.4.1
|
| 286 |
+
scikit-learn==1.4.0
|
| 287 |
+
scipy==1.11.4
|
| 288 |
+
semantic-version==2.10.0
|
| 289 |
+
sentence-transformers==2.2.2
|
| 290 |
+
sentencepiece==0.1.99
|
| 291 |
+
shellingham==1.5.4
|
| 292 |
+
six==1.16.0
|
| 293 |
+
sniffio==1.3.0
|
| 294 |
+
starlette==0.35.1
|
| 295 |
+
sympy==1.12
|
| 296 |
+
threadpoolctl==3.2.0
|
| 297 |
+
tokenizers==0.15.0
|
| 298 |
+
tomlkit==0.12.0
|
| 299 |
+
toolz==0.12.0
|
| 300 |
+
torch==2.1.2
|
| 301 |
+
torchvision==0.16.2
|
| 302 |
+
tqdm==4.66.1
|
| 303 |
+
transformers==4.36.2
|
| 304 |
+
typer==0.9.0
|
| 305 |
+
typing_extensions==4.9.0
|
| 306 |
+
tzdata==2023.4
|
| 307 |
+
urllib3==2.1.0
|
| 308 |
+
uvicorn==0.26.0
|
| 309 |
+
websockets==11.0.3
|
| 310 |
+
xxhash==3.4.1
|
| 311 |
+
yarl==1.9.4
|