Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,3 @@
|
|
| 1 |
-
# -*- coding: utf-8 -*-
|
| 2 |
-
|
| 3 |
-
#@title scirpts
|
| 4 |
import time
|
| 5 |
import numpy as np
|
| 6 |
import pandas as pd
|
|
@@ -8,8 +5,7 @@ import torch
|
|
| 8 |
import faiss
|
| 9 |
from sklearn.preprocessing import normalize
|
| 10 |
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
| 11 |
-
from sentence_transformers import SentenceTransformer
|
| 12 |
-
from pythainlp import Tokenizer
|
| 13 |
import pickle
|
| 14 |
import gradio as gr
|
| 15 |
|
|
@@ -17,7 +13,7 @@ print(torch.cuda.is_available())
|
|
| 17 |
|
| 18 |
__all__ = [
|
| 19 |
"mdeberta",
|
| 20 |
-
"wangchanberta-hyp",
|
| 21 |
]
|
| 22 |
|
| 23 |
predict_method = [
|
|
@@ -27,8 +23,8 @@ predict_method = [
|
|
| 27 |
"semanticSearchWithModel",
|
| 28 |
]
|
| 29 |
|
| 30 |
-
DEFAULT_MODEL='wangchanberta-hyp'
|
| 31 |
-
DEFAULT_SENTENCE_EMBEDDING_MODEL='intfloat/multilingual-e5-base'
|
| 32 |
|
| 33 |
MODEL_DICT = {
|
| 34 |
'wangchanberta': 'Chananchida/wangchanberta-th-wiki-qa_ref-params',
|
|
@@ -37,8 +33,8 @@ MODEL_DICT = {
|
|
| 37 |
'mdeberta-hyp': 'Chananchida/mdeberta-v3-th-wiki-qa_hyp-params',
|
| 38 |
}
|
| 39 |
|
| 40 |
-
DATA_PATH='models/dataset.xlsx'
|
| 41 |
-
EMBEDDINGS_PATH='models/embeddings.pkl'
|
| 42 |
|
| 43 |
|
| 44 |
class ChatbotModel:
|
|
@@ -50,12 +46,12 @@ class ChatbotModel:
|
|
| 50 |
self._chatbot.set_vectors()
|
| 51 |
self._chatbot.set_index()
|
| 52 |
|
| 53 |
-
|
| 54 |
def chat(self, question):
|
| 55 |
return self._chatbot.answer_question(question)
|
| 56 |
|
| 57 |
-
def eval(self,model,predict_method):
|
| 58 |
-
return self._chatbot.eval(model_name=model,predict_method=predict_method)
|
|
|
|
| 59 |
|
| 60 |
class Chatbot:
|
| 61 |
def __init__(self):
|
|
@@ -73,31 +69,29 @@ class Chatbot:
|
|
| 73 |
def load_data(self, path: str = DATA_PATH):
|
| 74 |
self.df = pd.read_excel(path, sheet_name='Default')
|
| 75 |
self.df['Context'] = pd.read_excel(path, sheet_name='mdeberta')['Context']
|
| 76 |
-
# print('Load data done')
|
| 77 |
|
| 78 |
def load_model(self, model_name: str = DEFAULT_MODEL):
|
| 79 |
self.model = AutoModelForQuestionAnswering.from_pretrained(MODEL_DICT[model_name])
|
| 80 |
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_DICT[model_name])
|
| 81 |
self.model_name = model_name
|
| 82 |
-
# print('Load model done')
|
| 83 |
|
| 84 |
def load_embedding_model(self, model_name: str = DEFAULT_SENTENCE_EMBEDDING_MODEL):
|
| 85 |
-
if torch.cuda.is_available():
|
| 86 |
-
self.embedding_model = SentenceTransformer(model_name, device='
|
| 87 |
-
else:
|
| 88 |
-
|
| 89 |
|
| 90 |
def set_vectors(self):
|
| 91 |
self.vectors = self.prepare_sentences_vector(self.load_embeddings(EMBEDDINGS_PATH))
|
| 92 |
|
| 93 |
def set_index(self):
|
| 94 |
-
if torch.cuda.is_available():
|
| 95 |
res = faiss.StandardGpuResources()
|
| 96 |
self.index = faiss.IndexFlatL2(self.vectors.shape[1])
|
| 97 |
gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, self.index)
|
| 98 |
gpu_index_flat.add(self.vectors)
|
| 99 |
self.index = gpu_index_flat
|
| 100 |
-
else:
|
| 101 |
self.index = faiss.IndexFlatL2(self.vectors.shape[1])
|
| 102 |
self.index.add(self.vectors)
|
| 103 |
|
|
@@ -110,18 +104,15 @@ class Chatbot:
|
|
| 110 |
encoded_list = normalize(encoded_list)
|
| 111 |
return encoded_list
|
| 112 |
|
| 113 |
-
|
| 114 |
def store_embeddings(self, embeddings):
|
| 115 |
with open('models/embeddings.pkl', "wb") as fOut:
|
| 116 |
pickle.dump({'sentences': self.df['Question'], 'embeddings': embeddings}, fOut, protocol=pickle.HIGHEST_PROTOCOL)
|
| 117 |
-
print('Store embeddings done')
|
| 118 |
|
| 119 |
def load_embeddings(self, file_path):
|
| 120 |
with open(file_path, "rb") as fIn:
|
| 121 |
stored_data = pickle.load(fIn)
|
| 122 |
stored_sentences = stored_data['sentences']
|
| 123 |
stored_embeddings = stored_data['embeddings']
|
| 124 |
-
print('Load (questions) embeddings done')
|
| 125 |
return stored_embeddings
|
| 126 |
|
| 127 |
def model_pipeline(self, question, similar_context):
|
|
@@ -140,25 +131,24 @@ class Chatbot:
|
|
| 140 |
similar_contexts = [self.df['Context'][indices[0][i]] for i in range(self.k)]
|
| 141 |
return similar_questions, similar_contexts, distances, indices
|
| 142 |
|
| 143 |
-
|
| 144 |
-
def predict(self,message):
|
| 145 |
message = message.strip()
|
| 146 |
question_vector = self.get_embeddings(message)
|
| 147 |
-
question_vector=self.prepare_sentences_vector([question_vector])
|
| 148 |
-
similar_questions, similar_contexts, distances,indices = self.faiss_search(question_vector)
|
| 149 |
Answer = self.model_pipeline(message, similar_contexts)
|
| 150 |
start_index = similar_contexts.find(Answer)
|
| 151 |
end_index = start_index + len(Answer)
|
| 152 |
-
_time = time.time() - t
|
| 153 |
output = {
|
| 154 |
"user_question": message,
|
| 155 |
-
"answer": df['Answer'][indices[0][0]],
|
| 156 |
-
"totaltime": round(_time, 3),
|
| 157 |
"distance": round(distances[0][0], 4),
|
| 158 |
"highlight_start": start_index,
|
| 159 |
"highlight_end": end_index
|
| 160 |
}
|
| 161 |
return output
|
|
|
|
|
|
|
| 162 |
def highlight_text(text, start_index, end_index):
|
| 163 |
if start_index < 0:
|
| 164 |
start_index = 0
|
|
@@ -166,21 +156,21 @@ def highlight_text(text, start_index, end_index):
|
|
| 166 |
end_index = len(text)
|
| 167 |
highlighted_text = ""
|
| 168 |
for i, char in enumerate(text):
|
| 169 |
-
|
| 170 |
highlighted_text += "<mark>"
|
| 171 |
highlighted_text += char
|
| 172 |
if i == end_index - 1:
|
| 173 |
highlighted_text += "</mark>"
|
| 174 |
return highlighted_text
|
| 175 |
|
| 176 |
-
|
| 177 |
-
""
|
| 178 |
-
if __name__ == "__main__":
|
| 179 |
bot = ChatbotModel()
|
|
|
|
| 180 |
def chat_interface(question, history):
|
| 181 |
-
response = bot._chatbot.predict(
|
| 182 |
highlighted_answer = highlight_text(response["answer"], response["highlight_start"], response["highlight_end"])
|
| 183 |
return highlighted_answer
|
| 184 |
-
|
| 185 |
-
demo = gr.
|
| 186 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import time
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
|
|
|
| 5 |
import faiss
|
| 6 |
from sklearn.preprocessing import normalize
|
| 7 |
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
| 8 |
+
from sentence_transformers import SentenceTransformer
|
|
|
|
| 9 |
import pickle
|
| 10 |
import gradio as gr
|
| 11 |
|
|
|
|
| 13 |
|
| 14 |
__all__ = [
|
| 15 |
"mdeberta",
|
| 16 |
+
"wangchanberta-hyp", # Best model
|
| 17 |
]
|
| 18 |
|
| 19 |
predict_method = [
|
|
|
|
| 23 |
"semanticSearchWithModel",
|
| 24 |
]
|
| 25 |
|
| 26 |
+
DEFAULT_MODEL = 'wangchanberta-hyp'
|
| 27 |
+
DEFAULT_SENTENCE_EMBEDDING_MODEL = 'intfloat/multilingual-e5-base'
|
| 28 |
|
| 29 |
MODEL_DICT = {
|
| 30 |
'wangchanberta': 'Chananchida/wangchanberta-th-wiki-qa_ref-params',
|
|
|
|
| 33 |
'mdeberta-hyp': 'Chananchida/mdeberta-v3-th-wiki-qa_hyp-params',
|
| 34 |
}
|
| 35 |
|
| 36 |
+
DATA_PATH = 'models/dataset.xlsx'
|
| 37 |
+
EMBEDDINGS_PATH = 'models/embeddings.pkl'
|
| 38 |
|
| 39 |
|
| 40 |
class ChatbotModel:
|
|
|
|
| 46 |
self._chatbot.set_vectors()
|
| 47 |
self._chatbot.set_index()
|
| 48 |
|
|
|
|
| 49 |
def chat(self, question):
|
| 50 |
return self._chatbot.answer_question(question)
|
| 51 |
|
| 52 |
+
def eval(self, model, predict_method):
|
| 53 |
+
return self._chatbot.eval(model_name=model, predict_method=predict_method)
|
| 54 |
+
|
| 55 |
|
| 56 |
class Chatbot:
|
| 57 |
def __init__(self):
|
|
|
|
| 69 |
def load_data(self, path: str = DATA_PATH):
|
| 70 |
self.df = pd.read_excel(path, sheet_name='Default')
|
| 71 |
self.df['Context'] = pd.read_excel(path, sheet_name='mdeberta')['Context']
|
|
|
|
| 72 |
|
| 73 |
def load_model(self, model_name: str = DEFAULT_MODEL):
|
| 74 |
self.model = AutoModelForQuestionAnswering.from_pretrained(MODEL_DICT[model_name])
|
| 75 |
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_DICT[model_name])
|
| 76 |
self.model_name = model_name
|
|
|
|
| 77 |
|
| 78 |
def load_embedding_model(self, model_name: str = DEFAULT_SENTENCE_EMBEDDING_MODEL):
|
| 79 |
+
if torch.cuda.is_available():
|
| 80 |
+
self.embedding_model = SentenceTransformer(model_name, device='cuda')
|
| 81 |
+
else:
|
| 82 |
+
self.embedding_model = SentenceTransformer(model_name)
|
| 83 |
|
| 84 |
def set_vectors(self):
|
| 85 |
self.vectors = self.prepare_sentences_vector(self.load_embeddings(EMBEDDINGS_PATH))
|
| 86 |
|
| 87 |
def set_index(self):
|
| 88 |
+
if torch.cuda.is_available():
|
| 89 |
res = faiss.StandardGpuResources()
|
| 90 |
self.index = faiss.IndexFlatL2(self.vectors.shape[1])
|
| 91 |
gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, self.index)
|
| 92 |
gpu_index_flat.add(self.vectors)
|
| 93 |
self.index = gpu_index_flat
|
| 94 |
+
else:
|
| 95 |
self.index = faiss.IndexFlatL2(self.vectors.shape[1])
|
| 96 |
self.index.add(self.vectors)
|
| 97 |
|
|
|
|
| 104 |
encoded_list = normalize(encoded_list)
|
| 105 |
return encoded_list
|
| 106 |
|
|
|
|
| 107 |
def store_embeddings(self, embeddings):
|
| 108 |
with open('models/embeddings.pkl', "wb") as fOut:
|
| 109 |
pickle.dump({'sentences': self.df['Question'], 'embeddings': embeddings}, fOut, protocol=pickle.HIGHEST_PROTOCOL)
|
|
|
|
| 110 |
|
| 111 |
def load_embeddings(self, file_path):
|
| 112 |
with open(file_path, "rb") as fIn:
|
| 113 |
stored_data = pickle.load(fIn)
|
| 114 |
stored_sentences = stored_data['sentences']
|
| 115 |
stored_embeddings = stored_data['embeddings']
|
|
|
|
| 116 |
return stored_embeddings
|
| 117 |
|
| 118 |
def model_pipeline(self, question, similar_context):
|
|
|
|
| 131 |
similar_contexts = [self.df['Context'][indices[0][i]] for i in range(self.k)]
|
| 132 |
return similar_questions, similar_contexts, distances, indices
|
| 133 |
|
| 134 |
+
def predict(self, message):
|
|
|
|
| 135 |
message = message.strip()
|
| 136 |
question_vector = self.get_embeddings(message)
|
| 137 |
+
question_vector = self.prepare_sentences_vector([question_vector])
|
| 138 |
+
similar_questions, similar_contexts, distances, indices = self.faiss_search(question_vector)
|
| 139 |
Answer = self.model_pipeline(message, similar_contexts)
|
| 140 |
start_index = similar_contexts.find(Answer)
|
| 141 |
end_index = start_index + len(Answer)
|
|
|
|
| 142 |
output = {
|
| 143 |
"user_question": message,
|
| 144 |
+
"answer": self.df['Answer'][indices[0][0]],
|
|
|
|
| 145 |
"distance": round(distances[0][0], 4),
|
| 146 |
"highlight_start": start_index,
|
| 147 |
"highlight_end": end_index
|
| 148 |
}
|
| 149 |
return output
|
| 150 |
+
|
| 151 |
+
|
| 152 |
def highlight_text(text, start_index, end_index):
|
| 153 |
if start_index < 0:
|
| 154 |
start_index = 0
|
|
|
|
| 156 |
end_index = len(text)
|
| 157 |
highlighted_text = ""
|
| 158 |
for i, char in enumerate(text):
|
| 159 |
+
if i == start_index:
|
| 160 |
highlighted_text += "<mark>"
|
| 161 |
highlighted_text += char
|
| 162 |
if i == end_index - 1:
|
| 163 |
highlighted_text += "</mark>"
|
| 164 |
return highlighted_text
|
| 165 |
|
| 166 |
+
|
| 167 |
+
if __name__ == "__main__":
|
|
|
|
| 168 |
bot = ChatbotModel()
|
| 169 |
+
|
| 170 |
def chat_interface(question, history):
|
| 171 |
+
response = bot._chatbot.predict(question)
|
| 172 |
highlighted_answer = highlight_text(response["answer"], response["highlight_start"], response["highlight_end"])
|
| 173 |
return highlighted_answer
|
| 174 |
+
|
| 175 |
+
demo = gr.Interface(fn=chat_interface, title="Thai Question Answering System", inputs="text", outputs="html")
|
| 176 |
demo.launch()
|