face-to-pixel-art / model.py
primerz's picture
Update model.py
45890f7 verified
import torch
import os
import cv2
import numpy as np
from config import Config
from diffusers import (
ControlNetModel,
LCMScheduler,
# AutoencoderKL # Removed as requested
)
from diffusers.models.controlnets.multicontrolnet import MultiControlNetModel
# Import the custom pipeline from your local file
from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline
from huggingface_hub import snapshot_download, hf_hub_download
from insightface.app import FaceAnalysis
from controlnet_aux import LeresDetector, LineartAnimeDetector
class ModelHandler:
def __init__(self):
self.pipeline = None
self.app = None # InsightFace
self.leres_detector = None
self.lineart_anime_detector = None
self.face_analysis_loaded = False
def load_face_analysis(self):
"""
Load face analysis model.
Downloads from HF Hub to the path insightface expects.
"""
print("Loading face analysis model...")
model_path = os.path.join(Config.ANTELOPEV2_ROOT, "models", Config.ANTELOPEV2_NAME)
if not os.path.exists(os.path.join(model_path, "scrfd_10g_bnkps.onnx")):
print(f"Downloading AntelopeV2 models from {Config.ANTELOPEV2_REPO} to {model_path}...")
try:
snapshot_download(
repo_id=Config.ANTELOPEV2_REPO,
local_dir=model_path, # Download to the correct expected path
)
except Exception as e:
print(f" [ERROR] Failed to download AntelopeV2 models: {e}")
return False
try:
self.app = FaceAnalysis(
name=Config.ANTELOPEV2_NAME,
root=Config.ANTELOPEV2_ROOT,
providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
)
self.app.prepare(ctx_id=0, det_size=(640, 640))
print(f" [OK] Face analysis model loaded successfully.")
return True
except Exception as e:
print(f" [WARNING] Face detection system failed to initialize: {e}")
return False
def load_models(self):
# 1. Load Face Analysis
self.face_analysis_loaded = self.load_face_analysis()
# 2. Load ControlNets
print("Loading ControlNets (InstantID, Zoe, LineArt)...")
# Load the InstantID ControlNet from the correct subfolder
print("Loading InstantID ControlNet from subfolder 'ControlNetModel'...")
cn_instantid = ControlNetModel.from_pretrained(
Config.INSTANTID_REPO,
subfolder="ControlNetModel",
torch_dtype=Config.DTYPE
)
print(" [OK] Loaded InstantID ControlNet.")
# Load other ControlNets normally
print("Loading Zoe and LineArt ControlNets...")
cn_zoe = ControlNetModel.from_pretrained(Config.CN_ZOE_REPO, torch_dtype=Config.DTYPE)
cn_lineart = ControlNetModel.from_pretrained(Config.CN_LINEART_REPO, torch_dtype=Config.DTYPE)
# --- Manually wrap the list of models in a MultiControlNetModel ---
print("Wrapping ControlNets in MultiControlNetModel...")
controlnet_list = [cn_instantid, cn_zoe, cn_lineart]
controlnet = MultiControlNetModel(controlnet_list)
# --- End wrapping ---
# 3. Load SDXL Pipeline
print(f"Loading SDXL Pipeline ({Config.CHECKPOINT_FILENAME})...")
checkpoint_local_path = os.path.join("./models", Config.CHECKPOINT_FILENAME)
if not os.path.exists(checkpoint_local_path):
print(f"Downloading checkpoint to {checkpoint_local_path}...")
hf_hub_download(
repo_id=Config.REPO_ID,
filename=Config.CHECKPOINT_FILENAME,
local_dir="./models",
local_dir_use_symlinks=False
)
print(f"Loading pipeline from local file: {checkpoint_local_path}")
self.pipeline = StableDiffusionXLInstantIDImg2ImgPipeline.from_single_file(
checkpoint_local_path,
controlnet=controlnet,
torch_dtype=Config.DTYPE,
use_safetensors=True
)
self.pipeline.to(Config.DEVICE)
try:
self.pipeline.enable_xformers_memory_efficient_attention()
print(" [OK] xFormers memory efficient attention enabled.")
except Exception as e:
print(f" [WARNING] Failed to enable xFormers: {e}")
print("Configuring LCMScheduler...")
scheduler_config = self.pipeline.scheduler.config
scheduler_config['clip_sample'] = False
# --- MODIFIED: optimize for sharp pixel art style ---
self.pipeline.scheduler = LCMScheduler.from_config(
scheduler_config,
timestep_spacing="trailing",
beta_schedule="scaled_linear"
)
print(" [OK] LCMScheduler loaded (clip_sample=False, trailing spacing).")
# 5. Load Adapters (IP-Adapter & LoRA)
print("Loading Adapters (IP-Adapter & LoRA)...")
ip_adapter_filename = "ip-adapter.bin"
ip_adapter_local_path = os.path.join("./models", ip_adapter_filename)
if not os.path.exists(ip_adapter_local_path):
print(f"Downloading IP-Adapter to {ip_adapter_local_path}...")
hf_hub_download(
repo_id=Config.INSTANTID_REPO,
filename=ip_adapter_filename,
local_dir="./models",
local_dir_use_symlinks=False
)
print(f"Loading IP-Adapter from local file: {ip_adapter_local_path}")
# Load InstantID adapter first
self.pipeline.load_ip_adapter_instantid(ip_adapter_local_path)
print("Loading LCM LoRA weights...")
# KEY CHANGE 1: Assign an adapter_name so Diffusers distinguishes it from InstantID
self.pipeline.load_lora_weights(
Config.REPO_ID,
weight_name=Config.LORA_FILENAME,
adapter_name="lcm_lora"
)
# KEY CHANGE 2: Hardcode scale to 1.0 for LCM to remove trigger word dependency
# (Or ensure Config.LORA_STRENGTH is set to 1.0)
fuse_scale = 1.0
print(f"Fusing LoRA 'lcm_lora' with scale {fuse_scale}...")
# KEY CHANGE 3: Fuse ONLY the named adapter
self.pipeline.fuse_lora(
adapter_names=["lcm_lora"],
lora_scale=fuse_scale
)
# KEY CHANGE 4: Unload the side-car weights to free VRAM (since they are now inside the UNet)
self.pipeline.unload_lora_weights()
print(" [OK] LoRA fused and cleaned up.")
# 6. Load Preprocessors
print("Loading Preprocessors (LeReS, LineArtAnime)...")
self.leres_detector = LeresDetector.from_pretrained(Config.ANNOTATOR_REPO)
self.lineart_anime_detector = LineartAnimeDetector.from_pretrained(Config.ANNOTATOR_REPO)
print("--- All models loaded successfully ---")
def get_face_info(self, image):
"""Extracts the largest face, returns insightface result object."""
if not self.face_analysis_loaded:
return None
try:
cv2_img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
faces = self.app.get(cv2_img)
if len(faces) == 0:
return None
# Sort by size (width * height) to find the main character
faces = sorted(faces, key=lambda x: (x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]), reverse=True)
# Return the largest face info
return faces[0]
except Exception as e:
print(f"Face embedding extraction failed: {e}")
return None