Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import os | |
| import cv2 | |
| import numpy as np | |
| from config import Config | |
| from diffusers import ( | |
| ControlNetModel, | |
| LCMScheduler, | |
| # AutoencoderKL # Removed as requested | |
| ) | |
| from diffusers.models.controlnets.multicontrolnet import MultiControlNetModel | |
| # Import the custom pipeline from your local file | |
| from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline | |
| from huggingface_hub import snapshot_download, hf_hub_download | |
| from insightface.app import FaceAnalysis | |
| from controlnet_aux import LeresDetector, LineartAnimeDetector | |
| class ModelHandler: | |
| def __init__(self): | |
| self.pipeline = None | |
| self.app = None # InsightFace | |
| self.leres_detector = None | |
| self.lineart_anime_detector = None | |
| self.face_analysis_loaded = False | |
| def load_face_analysis(self): | |
| """ | |
| Load face analysis model. | |
| Downloads from HF Hub to the path insightface expects. | |
| """ | |
| print("Loading face analysis model...") | |
| model_path = os.path.join(Config.ANTELOPEV2_ROOT, "models", Config.ANTELOPEV2_NAME) | |
| if not os.path.exists(os.path.join(model_path, "scrfd_10g_bnkps.onnx")): | |
| print(f"Downloading AntelopeV2 models from {Config.ANTELOPEV2_REPO} to {model_path}...") | |
| try: | |
| snapshot_download( | |
| repo_id=Config.ANTELOPEV2_REPO, | |
| local_dir=model_path, # Download to the correct expected path | |
| ) | |
| except Exception as e: | |
| print(f" [ERROR] Failed to download AntelopeV2 models: {e}") | |
| return False | |
| try: | |
| self.app = FaceAnalysis( | |
| name=Config.ANTELOPEV2_NAME, | |
| root=Config.ANTELOPEV2_ROOT, | |
| providers=['CUDAExecutionProvider', 'CPUExecutionProvider'] | |
| ) | |
| self.app.prepare(ctx_id=0, det_size=(640, 640)) | |
| print(f" [OK] Face analysis model loaded successfully.") | |
| return True | |
| except Exception as e: | |
| print(f" [WARNING] Face detection system failed to initialize: {e}") | |
| return False | |
| def load_models(self): | |
| # 1. Load Face Analysis | |
| self.face_analysis_loaded = self.load_face_analysis() | |
| # 2. Load ControlNets | |
| print("Loading ControlNets (InstantID, Zoe, LineArt)...") | |
| # Load the InstantID ControlNet from the correct subfolder | |
| print("Loading InstantID ControlNet from subfolder 'ControlNetModel'...") | |
| cn_instantid = ControlNetModel.from_pretrained( | |
| Config.INSTANTID_REPO, | |
| subfolder="ControlNetModel", | |
| torch_dtype=Config.DTYPE | |
| ) | |
| print(" [OK] Loaded InstantID ControlNet.") | |
| # Load other ControlNets normally | |
| print("Loading Zoe and LineArt ControlNets...") | |
| cn_zoe = ControlNetModel.from_pretrained(Config.CN_ZOE_REPO, torch_dtype=Config.DTYPE) | |
| cn_lineart = ControlNetModel.from_pretrained(Config.CN_LINEART_REPO, torch_dtype=Config.DTYPE) | |
| # --- Manually wrap the list of models in a MultiControlNetModel --- | |
| print("Wrapping ControlNets in MultiControlNetModel...") | |
| controlnet_list = [cn_instantid, cn_zoe, cn_lineart] | |
| controlnet = MultiControlNetModel(controlnet_list) | |
| # --- End wrapping --- | |
| # 3. Load SDXL Pipeline | |
| print(f"Loading SDXL Pipeline ({Config.CHECKPOINT_FILENAME})...") | |
| checkpoint_local_path = os.path.join("./models", Config.CHECKPOINT_FILENAME) | |
| if not os.path.exists(checkpoint_local_path): | |
| print(f"Downloading checkpoint to {checkpoint_local_path}...") | |
| hf_hub_download( | |
| repo_id=Config.REPO_ID, | |
| filename=Config.CHECKPOINT_FILENAME, | |
| local_dir="./models", | |
| local_dir_use_symlinks=False | |
| ) | |
| print(f"Loading pipeline from local file: {checkpoint_local_path}") | |
| self.pipeline = StableDiffusionXLInstantIDImg2ImgPipeline.from_single_file( | |
| checkpoint_local_path, | |
| controlnet=controlnet, | |
| torch_dtype=Config.DTYPE, | |
| use_safetensors=True | |
| ) | |
| self.pipeline.to(Config.DEVICE) | |
| try: | |
| self.pipeline.enable_xformers_memory_efficient_attention() | |
| print(" [OK] xFormers memory efficient attention enabled.") | |
| except Exception as e: | |
| print(f" [WARNING] Failed to enable xFormers: {e}") | |
| print("Configuring LCMScheduler...") | |
| scheduler_config = self.pipeline.scheduler.config | |
| scheduler_config['clip_sample'] = False | |
| # --- MODIFIED: optimize for sharp pixel art style --- | |
| self.pipeline.scheduler = LCMScheduler.from_config( | |
| scheduler_config, | |
| timestep_spacing="trailing", | |
| beta_schedule="scaled_linear" | |
| ) | |
| print(" [OK] LCMScheduler loaded (clip_sample=False, trailing spacing).") | |
| # 5. Load Adapters (IP-Adapter & LoRA) | |
| print("Loading Adapters (IP-Adapter & LoRA)...") | |
| ip_adapter_filename = "ip-adapter.bin" | |
| ip_adapter_local_path = os.path.join("./models", ip_adapter_filename) | |
| if not os.path.exists(ip_adapter_local_path): | |
| print(f"Downloading IP-Adapter to {ip_adapter_local_path}...") | |
| hf_hub_download( | |
| repo_id=Config.INSTANTID_REPO, | |
| filename=ip_adapter_filename, | |
| local_dir="./models", | |
| local_dir_use_symlinks=False | |
| ) | |
| print(f"Loading IP-Adapter from local file: {ip_adapter_local_path}") | |
| # Load InstantID adapter first | |
| self.pipeline.load_ip_adapter_instantid(ip_adapter_local_path) | |
| print("Loading LCM LoRA weights...") | |
| # KEY CHANGE 1: Assign an adapter_name so Diffusers distinguishes it from InstantID | |
| self.pipeline.load_lora_weights( | |
| Config.REPO_ID, | |
| weight_name=Config.LORA_FILENAME, | |
| adapter_name="lcm_lora" | |
| ) | |
| # KEY CHANGE 2: Hardcode scale to 1.0 for LCM to remove trigger word dependency | |
| # (Or ensure Config.LORA_STRENGTH is set to 1.0) | |
| fuse_scale = 1.0 | |
| print(f"Fusing LoRA 'lcm_lora' with scale {fuse_scale}...") | |
| # KEY CHANGE 3: Fuse ONLY the named adapter | |
| self.pipeline.fuse_lora( | |
| adapter_names=["lcm_lora"], | |
| lora_scale=fuse_scale | |
| ) | |
| # KEY CHANGE 4: Unload the side-car weights to free VRAM (since they are now inside the UNet) | |
| self.pipeline.unload_lora_weights() | |
| print(" [OK] LoRA fused and cleaned up.") | |
| # 6. Load Preprocessors | |
| print("Loading Preprocessors (LeReS, LineArtAnime)...") | |
| self.leres_detector = LeresDetector.from_pretrained(Config.ANNOTATOR_REPO) | |
| self.lineart_anime_detector = LineartAnimeDetector.from_pretrained(Config.ANNOTATOR_REPO) | |
| print("--- All models loaded successfully ---") | |
| def get_face_info(self, image): | |
| """Extracts the largest face, returns insightface result object.""" | |
| if not self.face_analysis_loaded: | |
| return None | |
| try: | |
| cv2_img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) | |
| faces = self.app.get(cv2_img) | |
| if len(faces) == 0: | |
| return None | |
| # Sort by size (width * height) to find the main character | |
| faces = sorted(faces, key=lambda x: (x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]), reverse=True) | |
| # Return the largest face info | |
| return faces[0] | |
| except Exception as e: | |
| print(f"Face embedding extraction failed: {e}") | |
| return None |