Spaces:
Running
on
Zero
Running
on
Zero
Update model.py
Browse files
model.py
CHANGED
|
@@ -6,7 +6,8 @@ from config import Config
|
|
| 6 |
|
| 7 |
from diffusers import (
|
| 8 |
ControlNetModel,
|
| 9 |
-
LCMScheduler
|
|
|
|
| 10 |
)
|
| 11 |
from diffusers.models.controlnets.multicontrolnet import MultiControlNetModel
|
| 12 |
|
|
@@ -85,6 +86,15 @@ class ModelHandler:
|
|
| 85 |
controlnet_list = [cn_instantid, cn_zoe, cn_lineart]
|
| 86 |
controlnet = MultiControlNetModel(controlnet_list)
|
| 87 |
# --- End wrapping ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
# 3. Load SDXL Pipeline
|
| 90 |
print(f"Loading SDXL Pipeline ({Config.CHECKPOINT_FILENAME})...")
|
|
@@ -103,6 +113,7 @@ class ModelHandler:
|
|
| 103 |
self.pipeline = StableDiffusionXLInstantIDImg2ImgPipeline.from_single_file(
|
| 104 |
checkpoint_local_path,
|
| 105 |
controlnet=controlnet,
|
|
|
|
| 106 |
torch_dtype=Config.DTYPE,
|
| 107 |
use_safetensors=True
|
| 108 |
)
|
|
@@ -165,16 +176,14 @@ class ModelHandler:
|
|
| 165 |
return None
|
| 166 |
|
| 167 |
try:
|
| 168 |
-
cv2_img = cv2.cvtColor(np.array(image), cv2.
|
| 169 |
faces = self.app.get(cv2_img)
|
| 170 |
|
| 171 |
if len(faces) == 0:
|
| 172 |
return None
|
| 173 |
|
| 174 |
# Sort by size (width * height) to find the main character
|
| 175 |
-
# --- MODIFIED: Fixed typo ---
|
| 176 |
faces = sorted(faces, key=lambda x: (x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]), reverse=True)
|
| 177 |
-
# --- END MODIFIED ---
|
| 178 |
|
| 179 |
# Return the largest face info
|
| 180 |
return faces[0]
|
|
|
|
| 6 |
|
| 7 |
from diffusers import (
|
| 8 |
ControlNetModel,
|
| 9 |
+
LCMScheduler,
|
| 10 |
+
AutoencoderKL # <-- ADDED
|
| 11 |
)
|
| 12 |
from diffusers.models.controlnets.multicontrolnet import MultiControlNetModel
|
| 13 |
|
|
|
|
| 86 |
controlnet_list = [cn_instantid, cn_zoe, cn_lineart]
|
| 87 |
controlnet = MultiControlNetModel(controlnet_list)
|
| 88 |
# --- End wrapping ---
|
| 89 |
+
|
| 90 |
+
# --- ADDED: Load fp16-safe VAE ---
|
| 91 |
+
print("Loading fp16-safe VAE (sdxl-vae-fp16-fix)...")
|
| 92 |
+
vae = AutoencoderKL.from_pretrained(
|
| 93 |
+
"madebyollin/sdxl-vae-fp16-fix",
|
| 94 |
+
torch_dtype=Config.DTYPE
|
| 95 |
+
)
|
| 96 |
+
print(" [OK] VAE loaded.")
|
| 97 |
+
# --- END ADDED ---
|
| 98 |
|
| 99 |
# 3. Load SDXL Pipeline
|
| 100 |
print(f"Loading SDXL Pipeline ({Config.CHECKPOINT_FILENAME})...")
|
|
|
|
| 113 |
self.pipeline = StableDiffusionXLInstantIDImg2ImgPipeline.from_single_file(
|
| 114 |
checkpoint_local_path,
|
| 115 |
controlnet=controlnet,
|
| 116 |
+
vae=vae, # <-- MODIFIED: Pass the safe VAE
|
| 117 |
torch_dtype=Config.DTYPE,
|
| 118 |
use_safetensors=True
|
| 119 |
)
|
|
|
|
| 176 |
return None
|
| 177 |
|
| 178 |
try:
|
| 179 |
+
cv2_img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 180 |
faces = self.app.get(cv2_img)
|
| 181 |
|
| 182 |
if len(faces) == 0:
|
| 183 |
return None
|
| 184 |
|
| 185 |
# Sort by size (width * height) to find the main character
|
|
|
|
| 186 |
faces = sorted(faces, key=lambda x: (x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]), reverse=True)
|
|
|
|
| 187 |
|
| 188 |
# Return the largest face info
|
| 189 |
return faces[0]
|