Spaces:
Running
on
Zero
Running
on
Zero
Update model.py
Browse files
model.py
CHANGED
|
@@ -6,7 +6,7 @@ from config import Config
|
|
| 6 |
|
| 7 |
from diffusers import (
|
| 8 |
ControlNetModel,
|
| 9 |
-
|
| 10 |
)
|
| 11 |
from diffusers.models.controlnets.multicontrolnet import MultiControlNetModel
|
| 12 |
|
|
@@ -15,17 +15,15 @@ from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInst
|
|
| 15 |
|
| 16 |
from huggingface_hub import snapshot_download, hf_hub_download
|
| 17 |
from insightface.app import FaceAnalysis
|
| 18 |
-
from controlnet_aux import LeresDetector, LineartAnimeDetector
|
| 19 |
|
| 20 |
class ModelHandler:
|
| 21 |
def __init__(self):
|
| 22 |
self.pipeline = None
|
| 23 |
-
self.app = None
|
| 24 |
self.leres_detector = None
|
| 25 |
self.lineart_anime_detector = None
|
| 26 |
-
self.canny_detector = None
|
| 27 |
self.face_analysis_loaded = False
|
| 28 |
-
self.edge_type = Config.DEFAULT_EDGE_TYPE
|
| 29 |
|
| 30 |
def load_face_analysis(self):
|
| 31 |
"""
|
|
@@ -41,7 +39,7 @@ class ModelHandler:
|
|
| 41 |
try:
|
| 42 |
snapshot_download(
|
| 43 |
repo_id=Config.ANTELOPEV2_REPO,
|
| 44 |
-
local_dir=model_path,
|
| 45 |
)
|
| 46 |
except Exception as e:
|
| 47 |
print(f" [ERROR] Failed to download AntelopeV2 models: {e}")
|
|
@@ -61,65 +59,25 @@ class ModelHandler:
|
|
| 61 |
print(f" [WARNING] Face detection system failed to initialize: {e}")
|
| 62 |
return False
|
| 63 |
|
| 64 |
-
def load_models(self
|
| 65 |
-
"""
|
| 66 |
-
Load all models with support for different edge detection types.
|
| 67 |
-
|
| 68 |
-
Args:
|
| 69 |
-
edge_type: "canny", "lineart", or "both"
|
| 70 |
-
"""
|
| 71 |
-
self.edge_type = edge_type
|
| 72 |
-
|
| 73 |
# 1. Load Face Analysis
|
| 74 |
self.face_analysis_loaded = self.load_face_analysis()
|
| 75 |
|
| 76 |
-
# 2. Load ControlNets
|
| 77 |
-
print(
|
| 78 |
cn_instantid = ControlNetModel.from_pretrained(
|
| 79 |
Config.INSTANTID_REPO,
|
| 80 |
subfolder="ControlNetModel",
|
| 81 |
torch_dtype=Config.DTYPE
|
| 82 |
)
|
| 83 |
-
cn_zoe = ControlNetModel.from_pretrained(
|
| 84 |
-
|
| 85 |
-
torch_dtype=Config.DTYPE
|
| 86 |
-
)
|
| 87 |
-
|
| 88 |
-
# Load edge ControlNet(s)
|
| 89 |
-
controlnet_list = [cn_instantid, cn_zoe]
|
| 90 |
-
|
| 91 |
-
if edge_type == "canny":
|
| 92 |
-
cn_canny = ControlNetModel.from_pretrained(
|
| 93 |
-
Config.CN_CANNY_REPO,
|
| 94 |
-
torch_dtype=Config.DTYPE
|
| 95 |
-
)
|
| 96 |
-
controlnet_list.append(cn_canny)
|
| 97 |
-
print(" [OK] Loaded Canny ControlNet")
|
| 98 |
-
|
| 99 |
-
elif edge_type == "lineart":
|
| 100 |
-
cn_lineart = ControlNetModel.from_pretrained(
|
| 101 |
-
Config.CN_LINEART_REPO,
|
| 102 |
-
torch_dtype=Config.DTYPE
|
| 103 |
-
)
|
| 104 |
-
controlnet_list.append(cn_lineart)
|
| 105 |
-
print(" [OK] Loaded LineArt ControlNet")
|
| 106 |
-
|
| 107 |
-
elif edge_type == "both":
|
| 108 |
-
cn_canny = ControlNetModel.from_pretrained(
|
| 109 |
-
Config.CN_CANNY_REPO,
|
| 110 |
-
torch_dtype=Config.DTYPE
|
| 111 |
-
)
|
| 112 |
-
cn_lineart = ControlNetModel.from_pretrained(
|
| 113 |
-
Config.CN_LINEART_REPO,
|
| 114 |
-
torch_dtype=Config.DTYPE
|
| 115 |
-
)
|
| 116 |
-
controlnet_list.extend([cn_canny, cn_lineart])
|
| 117 |
-
print(" [OK] Loaded both Canny and LineArt ControlNets")
|
| 118 |
|
| 119 |
print("Wrapping ControlNets in MultiControlNetModel...")
|
|
|
|
| 120 |
controlnet = MultiControlNetModel(controlnet_list)
|
| 121 |
|
| 122 |
-
# 3. Load SDXL Pipeline
|
| 123 |
print(f"Loading SDXL Pipeline ({Config.CHECKPOINT_FILENAME})...")
|
| 124 |
|
| 125 |
checkpoint_local_path = os.path.join("./models", Config.CHECKPOINT_FILENAME)
|
|
@@ -148,15 +106,18 @@ class ModelHandler:
|
|
| 148 |
except Exception as e:
|
| 149 |
print(f" [WARNING] Failed to enable xFormers: {e}")
|
| 150 |
|
| 151 |
-
# 4. Set
|
| 152 |
-
print("Configuring
|
| 153 |
-
self.pipeline.scheduler =
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
# 5. Load Adapters
|
| 157 |
print("Loading Adapters...")
|
| 158 |
|
| 159 |
-
#
|
| 160 |
print(f"Loading and Fusing Style LoRA ({Config.LORA_FILENAME})...")
|
| 161 |
style_lora_path = os.path.join("./models", Config.LORA_FILENAME)
|
| 162 |
if not os.path.exists(style_lora_path):
|
|
@@ -170,7 +131,7 @@ class ModelHandler:
|
|
| 170 |
self.pipeline.fuse_lora(lora_scale=Config.LORA_STRENGTH)
|
| 171 |
print(" [OK] Style LoRA fused.")
|
| 172 |
|
| 173 |
-
#
|
| 174 |
ip_adapter_filename = "ip-adapter.bin"
|
| 175 |
ip_adapter_local_path = os.path.join("./models", ip_adapter_filename)
|
| 176 |
if not os.path.exists(ip_adapter_local_path):
|
|
@@ -181,19 +142,14 @@ class ModelHandler:
|
|
| 181 |
local_dir_use_symlinks=False
|
| 182 |
)
|
| 183 |
self.pipeline.load_ip_adapter_instantid(ip_adapter_local_path)
|
| 184 |
-
print(" [OK]
|
|
|
|
|
|
|
| 185 |
|
| 186 |
-
#
|
| 187 |
-
print("Loading Preprocessors...")
|
| 188 |
self.leres_detector = LeresDetector.from_pretrained(Config.ANNOTATOR_REPO)
|
| 189 |
-
|
| 190 |
-
if edge_type in ["canny", "both"]:
|
| 191 |
-
self.canny_detector = CannyDetector()
|
| 192 |
-
print(" [OK] Canny detector loaded")
|
| 193 |
-
|
| 194 |
-
if edge_type in ["lineart", "both"]:
|
| 195 |
-
self.lineart_anime_detector = LineartAnimeDetector.from_pretrained(Config.ANNOTATOR_REPO)
|
| 196 |
-
print(" [OK] LineArt detector loaded")
|
| 197 |
|
| 198 |
print("--- All models loaded successfully ---")
|
| 199 |
|
|
@@ -206,28 +162,8 @@ class ModelHandler:
|
|
| 206 |
faces = self.app.get(cv2_img)
|
| 207 |
if len(faces) == 0:
|
| 208 |
return None
|
| 209 |
-
faces = sorted(
|
| 210 |
-
faces,
|
| 211 |
-
key=lambda x: (x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]),
|
| 212 |
-
reverse=True
|
| 213 |
-
)
|
| 214 |
return faces[0]
|
| 215 |
except Exception as e:
|
| 216 |
print(f"Face embedding extraction failed: {e}")
|
| 217 |
-
return None
|
| 218 |
-
|
| 219 |
-
def extract_depth(self, image):
|
| 220 |
-
"""Extract depth map using LeReS detector"""
|
| 221 |
-
return self.leres_detector(image)
|
| 222 |
-
|
| 223 |
-
def extract_canny(self, image, low_threshold=100, high_threshold=200):
|
| 224 |
-
"""Extract Canny edges"""
|
| 225 |
-
if self.canny_detector is None:
|
| 226 |
-
raise ValueError("Canny detector not loaded. Initialize with edge_type='canny' or 'both'")
|
| 227 |
-
return self.canny_detector(image, low_threshold=low_threshold, high_threshold=high_threshold)
|
| 228 |
-
|
| 229 |
-
def extract_lineart(self, image):
|
| 230 |
-
"""Extract LineArt edges"""
|
| 231 |
-
if self.lineart_anime_detector is None:
|
| 232 |
-
raise ValueError("LineArt detector not loaded. Initialize with edge_type='lineart' or 'both'")
|
| 233 |
-
return self.lineart_anime_detector(image)
|
|
|
|
| 6 |
|
| 7 |
from diffusers import (
|
| 8 |
ControlNetModel,
|
| 9 |
+
DPMSolverMultistepScheduler,
|
| 10 |
)
|
| 11 |
from diffusers.models.controlnets.multicontrolnet import MultiControlNetModel
|
| 12 |
|
|
|
|
| 15 |
|
| 16 |
from huggingface_hub import snapshot_download, hf_hub_download
|
| 17 |
from insightface.app import FaceAnalysis
|
| 18 |
+
from controlnet_aux import LeresDetector, LineartAnimeDetector
|
| 19 |
|
| 20 |
class ModelHandler:
|
| 21 |
def __init__(self):
|
| 22 |
self.pipeline = None
|
| 23 |
+
self.app = None # InsightFace
|
| 24 |
self.leres_detector = None
|
| 25 |
self.lineart_anime_detector = None
|
|
|
|
| 26 |
self.face_analysis_loaded = False
|
|
|
|
| 27 |
|
| 28 |
def load_face_analysis(self):
|
| 29 |
"""
|
|
|
|
| 39 |
try:
|
| 40 |
snapshot_download(
|
| 41 |
repo_id=Config.ANTELOPEV2_REPO,
|
| 42 |
+
local_dir=model_path, # Download to the correct expected path
|
| 43 |
)
|
| 44 |
except Exception as e:
|
| 45 |
print(f" [ERROR] Failed to download AntelopeV2 models: {e}")
|
|
|
|
| 59 |
print(f" [WARNING] Face detection system failed to initialize: {e}")
|
| 60 |
return False
|
| 61 |
|
| 62 |
+
def load_models(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
# 1. Load Face Analysis
|
| 64 |
self.face_analysis_loaded = self.load_face_analysis()
|
| 65 |
|
| 66 |
+
# 2. Load ControlNets
|
| 67 |
+
print("Loading ControlNets (InstantID, Zoe, LineArt)...")
|
| 68 |
cn_instantid = ControlNetModel.from_pretrained(
|
| 69 |
Config.INSTANTID_REPO,
|
| 70 |
subfolder="ControlNetModel",
|
| 71 |
torch_dtype=Config.DTYPE
|
| 72 |
)
|
| 73 |
+
cn_zoe = ControlNetModel.from_pretrained(Config.CN_ZOE_REPO, torch_dtype=Config.DTYPE)
|
| 74 |
+
cn_lineart = ControlNetModel.from_pretrained(Config.CN_LINEART_REPO, torch_dtype=Config.DTYPE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
print("Wrapping ControlNets in MultiControlNetModel...")
|
| 77 |
+
controlnet_list = [cn_instantid, cn_zoe, cn_lineart]
|
| 78 |
controlnet = MultiControlNetModel(controlnet_list)
|
| 79 |
|
| 80 |
+
# 3. Load SDXL Pipeline (Now from 'reality.safetensors')
|
| 81 |
print(f"Loading SDXL Pipeline ({Config.CHECKPOINT_FILENAME})...")
|
| 82 |
|
| 83 |
checkpoint_local_path = os.path.join("./models", Config.CHECKPOINT_FILENAME)
|
|
|
|
| 106 |
except Exception as e:
|
| 107 |
print(f" [WARNING] Failed to enable xFormers: {e}")
|
| 108 |
|
| 109 |
+
# 4. Set DPMSolver++ Scheduler with Karras sigmas
|
| 110 |
+
print("Configuring DPMSolverMultistepScheduler...")
|
| 111 |
+
self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
|
| 112 |
+
self.pipeline.scheduler.config,
|
| 113 |
+
use_karras_sigmas=True
|
| 114 |
+
)
|
| 115 |
+
print(" [OK] DPMSolverMultistepScheduler loaded with Karras sigmas.")
|
| 116 |
|
| 117 |
# 5. Load Adapters
|
| 118 |
print("Loading Adapters...")
|
| 119 |
|
| 120 |
+
# 5b. Load and Fuse Style LoRA (lucasart)
|
| 121 |
print(f"Loading and Fusing Style LoRA ({Config.LORA_FILENAME})...")
|
| 122 |
style_lora_path = os.path.join("./models", Config.LORA_FILENAME)
|
| 123 |
if not os.path.exists(style_lora_path):
|
|
|
|
| 131 |
self.pipeline.fuse_lora(lora_scale=Config.LORA_STRENGTH)
|
| 132 |
print(" [OK] Style LoRA fused.")
|
| 133 |
|
| 134 |
+
# 5c. Load IP-Adapter (for InstantID) - *Must be loaded AFTER fusing*
|
| 135 |
ip_adapter_filename = "ip-adapter.bin"
|
| 136 |
ip_adapter_local_path = os.path.join("./models", ip_adapter_filename)
|
| 137 |
if not os.path.exists(ip_adapter_local_path):
|
|
|
|
| 142 |
local_dir_use_symlinks=False
|
| 143 |
)
|
| 144 |
self.pipeline.load_ip_adapter_instantid(ip_adapter_local_path)
|
| 145 |
+
print(" [OK] IP-Adapter loaded.")
|
| 146 |
+
|
| 147 |
+
# --- END FIX ---
|
| 148 |
|
| 149 |
+
# 7. Load Preprocessors
|
| 150 |
+
print("Loading Preprocessors (LeReS, LineArtAnime)...")
|
| 151 |
self.leres_detector = LeresDetector.from_pretrained(Config.ANNOTATOR_REPO)
|
| 152 |
+
self.lineart_anime_detector = LineartAnimeDetector.from_pretrained(Config.ANNOTATOR_REPO)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
print("--- All models loaded successfully ---")
|
| 155 |
|
|
|
|
| 162 |
faces = self.app.get(cv2_img)
|
| 163 |
if len(faces) == 0:
|
| 164 |
return None
|
| 165 |
+
faces = sorted(faces, key=lambda x: (x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]), reverse=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
return faces[0]
|
| 167 |
except Exception as e:
|
| 168 |
print(f"Face embedding extraction failed: {e}")
|
| 169 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|