Spaces:
Sleeping
Sleeping
Update body_analyzer.py
Browse files- body_analyzer.py +19 -12
body_analyzer.py
CHANGED
|
@@ -2,8 +2,8 @@ import requests
|
|
| 2 |
import os
|
| 3 |
import re
|
| 4 |
|
| 5 |
-
HF_API_KEY = os.getenv("HF_API_KEY")
|
| 6 |
-
HF_HEADERS = {"Authorization": f"Bearer {HF_API_KEY}"}
|
| 7 |
|
| 8 |
MODELS = {
|
| 9 |
"ai_detector": "roberta-base-openai-detector",
|
|
@@ -11,7 +11,6 @@ MODELS = {
|
|
| 11 |
"spam": "mrm8488/bert-tiny-finetuned-sms-spam-detection",
|
| 12 |
}
|
| 13 |
|
| 14 |
-
# Suspicious patterns to look for
|
| 15 |
SUSPICIOUS_PATTERNS = [
|
| 16 |
r"verify your account",
|
| 17 |
r"urgent action",
|
|
@@ -30,9 +29,14 @@ SUSPICIOUS_PATTERNS = [
|
|
| 30 |
]
|
| 31 |
|
| 32 |
def query_hf(model, text):
|
| 33 |
-
|
|
|
|
| 34 |
try:
|
| 35 |
-
res = requests.post(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
return res.json()
|
| 37 |
except Exception:
|
| 38 |
return None
|
|
@@ -41,13 +45,17 @@ def analyze_body(text):
|
|
| 41 |
findings = []
|
| 42 |
score = 0
|
| 43 |
body_lower = text.lower()
|
|
|
|
| 44 |
|
| 45 |
# --- 1. Suspicious keyword detection ---
|
| 46 |
for pattern in SUSPICIOUS_PATTERNS:
|
| 47 |
matches = re.findall(pattern, body_lower)
|
| 48 |
for match in matches:
|
| 49 |
findings.append(f"Suspicious phrase detected: \"{match}\"")
|
| 50 |
-
score += 20
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
# --- 2. AI-generated text detection ---
|
| 53 |
result = query_hf(MODELS["ai_detector"], text)
|
|
@@ -55,7 +63,6 @@ def analyze_body(text):
|
|
| 55 |
label = result[0]["label"]
|
| 56 |
confidence = result[0]["score"]
|
| 57 |
findings.append(f"Body: AI Detector β {label} (confidence {confidence:.2f})")
|
| 58 |
-
# No score impact yet (just informational)
|
| 59 |
|
| 60 |
# --- 3. Sentiment analysis ---
|
| 61 |
result = query_hf(MODELS["sentiment"], text)
|
|
@@ -63,8 +70,8 @@ def analyze_body(text):
|
|
| 63 |
label = result[0]["label"]
|
| 64 |
confidence = result[0]["score"]
|
| 65 |
findings.append(f"Body: Sentiment β {label} (confidence {confidence:.2f})")
|
| 66 |
-
if label.lower()
|
| 67 |
-
score += 10
|
| 68 |
|
| 69 |
# --- 4. Spam vs Ham detection ---
|
| 70 |
result = query_hf(MODELS["spam"], text)
|
|
@@ -73,9 +80,9 @@ def analyze_body(text):
|
|
| 73 |
confidence = result[0]["score"]
|
| 74 |
findings.append(f"Body: Spam Detector β {label} (confidence {confidence:.2f})")
|
| 75 |
if label.lower() == "spam":
|
| 76 |
-
score += 20
|
| 77 |
|
| 78 |
if not findings:
|
| 79 |
-
return ["No suspicious content detected in body."], 0
|
| 80 |
|
| 81 |
-
return findings, score
|
|
|
|
| 2 |
import os
|
| 3 |
import re
|
| 4 |
|
| 5 |
+
HF_API_KEY = os.getenv("HF_API_KEY")
|
| 6 |
+
HF_HEADERS = {"Authorization": f"Bearer {HF_API_KEY}"} if HF_API_KEY else {}
|
| 7 |
|
| 8 |
MODELS = {
|
| 9 |
"ai_detector": "roberta-base-openai-detector",
|
|
|
|
| 11 |
"spam": "mrm8488/bert-tiny-finetuned-sms-spam-detection",
|
| 12 |
}
|
| 13 |
|
|
|
|
| 14 |
SUSPICIOUS_PATTERNS = [
|
| 15 |
r"verify your account",
|
| 16 |
r"urgent action",
|
|
|
|
| 29 |
]
|
| 30 |
|
| 31 |
def query_hf(model, text):
|
| 32 |
+
if not HF_API_KEY:
|
| 33 |
+
return None
|
| 34 |
try:
|
| 35 |
+
res = requests.post(
|
| 36 |
+
f"https://api-inference.huggingface.co/models/{model}",
|
| 37 |
+
headers=HF_HEADERS,
|
| 38 |
+
json={"inputs": text[:1000]},
|
| 39 |
+
)
|
| 40 |
return res.json()
|
| 41 |
except Exception:
|
| 42 |
return None
|
|
|
|
| 45 |
findings = []
|
| 46 |
score = 0
|
| 47 |
body_lower = text.lower()
|
| 48 |
+
highlighted_body = text
|
| 49 |
|
| 50 |
# --- 1. Suspicious keyword detection ---
|
| 51 |
for pattern in SUSPICIOUS_PATTERNS:
|
| 52 |
matches = re.findall(pattern, body_lower)
|
| 53 |
for match in matches:
|
| 54 |
findings.append(f"Suspicious phrase detected: \"{match}\"")
|
| 55 |
+
score += 20
|
| 56 |
+
highlighted_body = re.sub(
|
| 57 |
+
match, f"<mark>{match}</mark>", highlighted_body, flags=re.IGNORECASE
|
| 58 |
+
)
|
| 59 |
|
| 60 |
# --- 2. AI-generated text detection ---
|
| 61 |
result = query_hf(MODELS["ai_detector"], text)
|
|
|
|
| 63 |
label = result[0]["label"]
|
| 64 |
confidence = result[0]["score"]
|
| 65 |
findings.append(f"Body: AI Detector β {label} (confidence {confidence:.2f})")
|
|
|
|
| 66 |
|
| 67 |
# --- 3. Sentiment analysis ---
|
| 68 |
result = query_hf(MODELS["sentiment"], text)
|
|
|
|
| 70 |
label = result[0]["label"]
|
| 71 |
confidence = result[0]["score"]
|
| 72 |
findings.append(f"Body: Sentiment β {label} (confidence {confidence:.2f})")
|
| 73 |
+
if label.lower() == "negative":
|
| 74 |
+
score += 10
|
| 75 |
|
| 76 |
# --- 4. Spam vs Ham detection ---
|
| 77 |
result = query_hf(MODELS["spam"], text)
|
|
|
|
| 80 |
confidence = result[0]["score"]
|
| 81 |
findings.append(f"Body: Spam Detector β {label} (confidence {confidence:.2f})")
|
| 82 |
if label.lower() == "spam":
|
| 83 |
+
score += 20
|
| 84 |
|
| 85 |
if not findings:
|
| 86 |
+
return ["No suspicious content detected in body."], 0, text
|
| 87 |
|
| 88 |
+
return findings, score, highlighted_body
|