Spaces:
Sleeping
Sleeping
Update body_analyzer.py
Browse files- body_analyzer.py +39 -28
body_analyzer.py
CHANGED
|
@@ -2,7 +2,6 @@ import requests
|
|
| 2 |
import os
|
| 3 |
import re
|
| 4 |
|
| 5 |
-
# --- HuggingFace API setup ---
|
| 6 |
HF_API_KEY = os.getenv("HF_API_KEY")
|
| 7 |
HF_HEADERS = {"Authorization": f"Bearer {HF_API_KEY}"} if HF_API_KEY else {}
|
| 8 |
|
|
@@ -12,7 +11,6 @@ MODELS = {
|
|
| 12 |
"spam": "mrm8488/bert-tiny-finetuned-sms-spam-detection",
|
| 13 |
}
|
| 14 |
|
| 15 |
-
# --- Suspicious keyword patterns ---
|
| 16 |
SUSPICIOUS_PATTERNS = [
|
| 17 |
r"verify your account",
|
| 18 |
r"urgent action",
|
|
@@ -41,7 +39,6 @@ SUSPICIOUS_PATTERNS = [
|
|
| 41 |
r"risk-free",
|
| 42 |
]
|
| 43 |
|
| 44 |
-
# --- Helper: query HuggingFace model ---
|
| 45 |
def query_hf(model, text):
|
| 46 |
if not HF_API_KEY:
|
| 47 |
return None
|
|
@@ -50,61 +47,75 @@ def query_hf(model, text):
|
|
| 50 |
f"https://api-inference.huggingface.co/models/{model}",
|
| 51 |
headers=HF_HEADERS,
|
| 52 |
json={"inputs": text[:1000]},
|
|
|
|
| 53 |
)
|
| 54 |
return res.json()
|
| 55 |
except Exception:
|
| 56 |
return None
|
| 57 |
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
def analyze_body(text):
|
| 60 |
findings = []
|
| 61 |
score = 0
|
| 62 |
-
body_lower = text.lower()
|
| 63 |
-
highlighted_body = text
|
| 64 |
|
| 65 |
-
#
|
| 66 |
for pattern in SUSPICIOUS_PATTERNS:
|
| 67 |
matches = re.findall(pattern, body_lower)
|
| 68 |
for match in matches:
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
| 71 |
highlighted_body = re.sub(
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
| 73 |
)
|
| 74 |
|
| 75 |
-
#
|
| 76 |
urls = re.findall(r'https?://[^\s]+', body_lower)
|
| 77 |
for url in urls:
|
| 78 |
findings.append(f"Suspicious URL detected: {url}")
|
| 79 |
score += 10
|
| 80 |
-
highlighted_body = re.sub(url, f"<mark>{url}</mark>", highlighted_body, flags=re.IGNORECASE)
|
| 81 |
|
| 82 |
-
#
|
| 83 |
-
|
| 84 |
-
if
|
| 85 |
-
label = result[0]["label"]
|
| 86 |
-
confidence = result[0]["score"]
|
| 87 |
findings.append(f"Body: AI Detector β {label} (confidence {confidence:.2f})")
|
| 88 |
|
| 89 |
-
#
|
| 90 |
-
|
| 91 |
-
if
|
| 92 |
-
label = result[0]["label"]
|
| 93 |
-
confidence = result[0]["score"]
|
| 94 |
findings.append(f"Body: Sentiment β {label} (confidence {confidence:.2f})")
|
| 95 |
if label.lower() == "negative":
|
| 96 |
score += 10
|
| 97 |
|
| 98 |
-
#
|
| 99 |
-
|
| 100 |
-
if
|
| 101 |
-
label = result[0]["label"]
|
| 102 |
-
confidence = result[0]["score"]
|
| 103 |
findings.append(f"Body: Spam Detector β {label} (confidence {confidence:.2f})")
|
| 104 |
if label.lower() == "spam":
|
| 105 |
score += 25
|
| 106 |
|
| 107 |
-
#
|
| 108 |
if score >= 50:
|
| 109 |
verdict = "Malicious / Spam"
|
| 110 |
elif score >= 20:
|
|
|
|
| 2 |
import os
|
| 3 |
import re
|
| 4 |
|
|
|
|
| 5 |
HF_API_KEY = os.getenv("HF_API_KEY")
|
| 6 |
HF_HEADERS = {"Authorization": f"Bearer {HF_API_KEY}"} if HF_API_KEY else {}
|
| 7 |
|
|
|
|
| 11 |
"spam": "mrm8488/bert-tiny-finetuned-sms-spam-detection",
|
| 12 |
}
|
| 13 |
|
|
|
|
| 14 |
SUSPICIOUS_PATTERNS = [
|
| 15 |
r"verify your account",
|
| 16 |
r"urgent action",
|
|
|
|
| 39 |
r"risk-free",
|
| 40 |
]
|
| 41 |
|
|
|
|
| 42 |
def query_hf(model, text):
|
| 43 |
if not HF_API_KEY:
|
| 44 |
return None
|
|
|
|
| 47 |
f"https://api-inference.huggingface.co/models/{model}",
|
| 48 |
headers=HF_HEADERS,
|
| 49 |
json={"inputs": text[:1000]},
|
| 50 |
+
timeout=15,
|
| 51 |
)
|
| 52 |
return res.json()
|
| 53 |
except Exception:
|
| 54 |
return None
|
| 55 |
|
| 56 |
+
def parse_hf_result(result):
|
| 57 |
+
# Common shapes: [{"label": "...", "score": ...}] or {"labels":[...], "scores":[...]}
|
| 58 |
+
if not result:
|
| 59 |
+
return None, None
|
| 60 |
+
if isinstance(result, list) and result and isinstance(result[0], dict):
|
| 61 |
+
if "label" in result[0] and "score" in result[0]:
|
| 62 |
+
return result[0]["label"], result[0]["score"]
|
| 63 |
+
if isinstance(result, dict):
|
| 64 |
+
labels = result.get("labels") or []
|
| 65 |
+
scores = result.get("scores") or []
|
| 66 |
+
if labels and scores:
|
| 67 |
+
return labels[0], scores[0]
|
| 68 |
+
return None, None
|
| 69 |
+
|
| 70 |
def analyze_body(text):
|
| 71 |
findings = []
|
| 72 |
score = 0
|
| 73 |
+
body_lower = (text or "").lower()
|
| 74 |
+
highlighted_body = text or ""
|
| 75 |
|
| 76 |
+
# 1) Suspicious phrases
|
| 77 |
for pattern in SUSPICIOUS_PATTERNS:
|
| 78 |
matches = re.findall(pattern, body_lower)
|
| 79 |
for match in matches:
|
| 80 |
+
display = match if isinstance(match, str) else (match[0] if match else "")
|
| 81 |
+
if not display:
|
| 82 |
+
continue
|
| 83 |
+
findings.append(f'Suspicious phrase detected: "{display}"')
|
| 84 |
+
score += 15 # tuned down to reduce instant Malicious
|
| 85 |
highlighted_body = re.sub(
|
| 86 |
+
re.escape(display),
|
| 87 |
+
f"<mark>{display}</mark>",
|
| 88 |
+
highlighted_body,
|
| 89 |
+
flags=re.IGNORECASE,
|
| 90 |
)
|
| 91 |
|
| 92 |
+
# 2) URLs
|
| 93 |
urls = re.findall(r'https?://[^\s]+', body_lower)
|
| 94 |
for url in urls:
|
| 95 |
findings.append(f"Suspicious URL detected: {url}")
|
| 96 |
score += 10
|
| 97 |
+
highlighted_body = re.sub(re.escape(url), f"<mark>{url}</mark>", highlighted_body, flags=re.IGNORECASE)
|
| 98 |
|
| 99 |
+
# 3) AI text detector
|
| 100 |
+
label, confidence = parse_hf_result(query_hf(MODELS["ai_detector"], text or ""))
|
| 101 |
+
if label:
|
|
|
|
|
|
|
| 102 |
findings.append(f"Body: AI Detector β {label} (confidence {confidence:.2f})")
|
| 103 |
|
| 104 |
+
# 4) Sentiment
|
| 105 |
+
label, confidence = parse_hf_result(query_hf(MODELS["sentiment"], text or ""))
|
| 106 |
+
if label:
|
|
|
|
|
|
|
| 107 |
findings.append(f"Body: Sentiment β {label} (confidence {confidence:.2f})")
|
| 108 |
if label.lower() == "negative":
|
| 109 |
score += 10
|
| 110 |
|
| 111 |
+
# 5) Spam detector
|
| 112 |
+
label, confidence = parse_hf_result(query_hf(MODELS["spam"], text or ""))
|
| 113 |
+
if label:
|
|
|
|
|
|
|
| 114 |
findings.append(f"Body: Spam Detector β {label} (confidence {confidence:.2f})")
|
| 115 |
if label.lower() == "spam":
|
| 116 |
score += 25
|
| 117 |
|
| 118 |
+
# 6) Verdict
|
| 119 |
if score >= 50:
|
| 120 |
verdict = "Malicious / Spam"
|
| 121 |
elif score >= 20:
|