File size: 8,936 Bytes
fb03699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image
from typing import Iterable
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes

colors.steel_blue = colors.Color(
    name="steel_blue",
    c50="#EBF3F8",
    c100="#D3E5F0",
    c200="#A8CCE1",
    c300="#7DB3D2",
    c400="#529AC3",
    c500="#4682B4",
    c600="#3E72A0",
    c700="#36638C",
    c800="#2E5378",
    c900="#264364",
    c950="#1E3450",
)

class SteelBlueTheme(Soft):
    def __init__(

        self,

        *,

        primary_hue: colors.Color | str = colors.gray,

        secondary_hue: colors.Color | str = colors.steel_blue,

        neutral_hue: colors.Color | str = colors.slate,

        text_size: sizes.Size | str = sizes.text_lg,

        font: fonts.Font | str | Iterable[fonts.Font | str] = (

            fonts.GoogleFont("Outfit"), "Arial", "sans-serif",

        ),

        font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (

            fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",

        ),

    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            background_fill_primary="*primary_50",
            background_fill_primary_dark="*primary_900",
            body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
            body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
            button_primary_text_color="white",
            button_primary_text_color_hover="white",
            button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
            button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
            slider_color="*secondary_500",
            slider_color_dark="*secondary_600",
            block_title_text_weight="600",
            block_border_width="3px",
            block_shadow="*shadow_drop_lg",
        )

steel_blue_theme = SteelBlueTheme()

from diffusers import FlowMatchEulerDiscreteScheduler
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = QwenImageEditPlusPipeline.from_pretrained(
    "Qwen/Qwen-Image-Edit-2509",
    transformer=QwenImageTransformer2DModel.from_pretrained(
        "linoyts/Qwen-Image-Edit-Rapid-AIO",
        subfolder='transformer',
        torch_dtype=dtype,
        device_map='cuda'
    ),
    torch_dtype=dtype
).to(device)

pipe.load_lora_weights("autoweeb/Qwen-Image-Edit-2509-Photo-to-Anime",
                       weight_name="Qwen-Image-Edit-2509-Photo-to-Anime_000001000.safetensors",
                       adapter_name="anime")
pipe.load_lora_weights("dx8152/Qwen-Edit-2509-Multiple-angles",
                       weight_name="镜头转换.safetensors",
                       adapter_name="multiple-angles")
pipe.load_lora_weights("dx8152/Qwen-Image-Edit-2509-Light_restoration",
                       weight_name="移除光影.safetensors",
                       adapter_name="light-restoration")
pipe.load_lora_weights("dx8152/Qwen-Image-Edit-2509-Relight",
                       weight_name="Qwen-Edit-Relight.safetensors",
                       adapter_name="relight")

pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
MAX_SEED = np.iinfo(np.int32).max

@spaces.GPU
def infer(

    input_image,

    prompt,

    lora_adapter,

    seed,

    randomize_seed,

    guidance_scale,

    steps,

    progress=gr.Progress(track_tqdm=True)

):
    if input_image is None:
        raise gr.Error("Please upload an image to edit.")

    if lora_adapter == "Photo-to-Anime":
        pipe.set_adapters(["anime"], adapter_weights=[1.0])
    elif lora_adapter == "Multiple-Angles":
        pipe.set_adapters(["multiple-angles"], adapter_weights=[1.0])
    elif lora_adapter == "Light-Restoration":
        pipe.set_adapters(["light-restoration"], adapter_weights=[1.0])
    elif lora_adapter == "Relight":
        pipe.set_adapters(["relight"], adapter_weights=[1.0])

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator(device=device).manual_seed(seed)
    negative_prompt = "worst quality, low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry"

    original_image = input_image.convert("RGB")
    width, height = original_image.size

    result = pipe(
        image=original_image,
        prompt=prompt,
        negative_prompt=negative_prompt,
        height=height,
        width=width,
        num_inference_steps=steps,
        generator=generator,
        true_cfg_scale=guidance_scale,
    ).images[0]

    return result, seed

@spaces.GPU
def infer_example(input_image, prompt, lora_adapter):
    input_pil = input_image.convert("RGB")
    guidance_scale = 1.0
    steps = 4
    result, seed = infer(input_pil, prompt, lora_adapter, 0, True, guidance_scale, steps)
    return result, seed


css="""

#col-container {

    margin: 0 auto;

    max-width: 960px;

}

#main-title h1 {font-size: 2.1em !important;}

"""

with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# **Qwen-Image-Edit-2509-LoRAs-Fast**", elem_id="main-title")
        gr.Markdown("Perform diverse image edits using specialized LoRA adapters for the Qwen-Image-Edit model.")

        with gr.Row(equal_height=True):
            with gr.Column():
                input_image = gr.Image(label="Upload Image", type="pil")

                prompt = gr.Text(
                    label="Edit Prompt",
                    show_label=True,
                    placeholder="e.g., transform into anime",
                )

                run_button = gr.Button("Run", variant="primary")

            with gr.Column():
                output_image = gr.Image(label="Output Image", interactive=False, format="png", height=290)
                
                with gr.Row():
                    lora_adapter = gr.Dropdown(
                        label="Choose Editing Style",
                        choices=["Photo-to-Anime", "Multiple-Angles", "Light-Restoration", "Relight"],
                        value="Photo-to-Anime"
                    )
                with gr.Accordion("⚙️ Advanced Settings", open=False):
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                    randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                    guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
                    steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=4)
        
        gr.Examples(
            examples=[
                ["examples/1.jpg", "Transform into anime.", "Photo-to-Anime"],
                ["examples/5.jpg", "Remove shadows and relight the image using soft lighting.", "Light-Restoration"],
                ["examples/4.jpg", "Relight the image using soft, diffused lighting that simulates sunlight filtering.", "Relight"],
                ["examples/2.jpeg", "Move the camera left.", "Multiple-Angles"],
                ["examples/2.jpeg", "Move the camera right.", "Multiple-Angles"],
                ["examples/2.jpeg", "Rotate the camera 45 degrees to the left.", "Multiple-Angles"],
                ["examples/3.jpg", "Rotate the camera 45 degrees to the right.", "Multiple-Angles"],
                ["examples/3.jpg", "Switch the camera to a top-down view.", "Multiple-Angles"],
                ["examples/3.jpg", "Switch the camera to a wide-angle lens.", "Multiple-Angles"],
                ["examples/3.jpg", "Switch the camera to a close-up lens.", "Multiple-Angles"],
            ],
            inputs=[input_image, prompt, lora_adapter],
            outputs=[output_image, seed],
            fn=infer_example,
            cache_examples=False,
            label="Examples"
        )

    run_button.click(
        fn=infer,
        inputs=[input_image, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps],
        outputs=[output_image, seed]
    )
    
demo.launch(mcp_server=True, ssr_mode=False, show_error=True)