Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -62,10 +62,6 @@ model_k = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
| 62 |
).to(device).eval()
|
| 63 |
|
| 64 |
def downsample_video(video_path):
|
| 65 |
-
"""
|
| 66 |
-
Downsamples the video to evenly spaced frames.
|
| 67 |
-
Each frame is returned as a PIL image along with its timestamp.
|
| 68 |
-
"""
|
| 69 |
vidcap = cv2.VideoCapture(video_path)
|
| 70 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 71 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
|
@@ -84,16 +80,14 @@ def downsample_video(video_path):
|
|
| 84 |
|
| 85 |
@spaces.GPU
|
| 86 |
def generate_image(model_name: str, text: str, image: Image.Image,
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
"""
|
| 93 |
-
Generates responses using the selected model for image input.
|
| 94 |
-
"""
|
| 95 |
if model_name == "Llama-3.1-Nemotron-Nano-VL-8B-V1":
|
| 96 |
processor = processor_m
|
|
|
|
| 97 |
model = model_m
|
| 98 |
elif model_name == "SpaceThinker-3B":
|
| 99 |
processor = processor_z
|
|
@@ -109,23 +103,43 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 109 |
yield "Please upload an image."
|
| 110 |
return
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
| 130 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 131 |
thread.start()
|
|
@@ -138,16 +152,14 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 138 |
|
| 139 |
@spaces.GPU
|
| 140 |
def generate_video(model_name: str, text: str, video_path: str,
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
"""
|
| 147 |
-
Generates responses using the selected model for video input.
|
| 148 |
-
"""
|
| 149 |
if model_name == "Llama-3.1-Nemotron-Nano-VL-8B-V1":
|
| 150 |
processor = processor_m
|
|
|
|
| 151 |
model = model_m
|
| 152 |
elif model_name == "SpaceThinker-3B":
|
| 153 |
processor = processor_z
|
|
@@ -164,24 +176,47 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
| 164 |
return
|
| 165 |
|
| 166 |
frames = downsample_video(video_path)
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
generation_kwargs = {
|
| 186 |
**inputs,
|
| 187 |
"streamer": streamer,
|
|
|
|
| 62 |
).to(device).eval()
|
| 63 |
|
| 64 |
def downsample_video(video_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
vidcap = cv2.VideoCapture(video_path)
|
| 66 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 67 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
|
|
|
| 80 |
|
| 81 |
@spaces.GPU
|
| 82 |
def generate_image(model_name: str, text: str, image: Image.Image,
|
| 83 |
+
max_new_tokens: int = 1024,
|
| 84 |
+
temperature: float = 0.6,
|
| 85 |
+
top_p: float = 0.9,
|
| 86 |
+
top_k: int = 50,
|
| 87 |
+
repetition_penalty: float = 1.2):
|
|
|
|
|
|
|
|
|
|
| 88 |
if model_name == "Llama-3.1-Nemotron-Nano-VL-8B-V1":
|
| 89 |
processor = processor_m
|
| 90 |
+
tokenizer = tokenizer_m
|
| 91 |
model = model_m
|
| 92 |
elif model_name == "SpaceThinker-3B":
|
| 93 |
processor = processor_z
|
|
|
|
| 103 |
yield "Please upload an image."
|
| 104 |
return
|
| 105 |
|
| 106 |
+
# For Llama-3.1-Nemotron-Nano-VL-8B-V1, manually construct prompt and tokenize
|
| 107 |
+
if model_name == "Llama-3.1-Nemotron-Nano-VL-8B-V1":
|
| 108 |
+
# Construct a simple prompt since apply_chat_template is not available
|
| 109 |
+
prompt_full = f"<|image|>{text}<|endoftext|>"
|
| 110 |
+
inputs = tokenizer(
|
| 111 |
+
prompt_full,
|
| 112 |
+
return_tensors="pt",
|
| 113 |
+
padding=True,
|
| 114 |
+
truncation=False,
|
| 115 |
+
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 116 |
+
).to(device)
|
| 117 |
+
# Process image separately
|
| 118 |
+
image_inputs = processor(image, return_tensors="pt").to(device)
|
| 119 |
+
inputs.update(image_inputs)
|
| 120 |
+
else:
|
| 121 |
+
messages = [{
|
| 122 |
+
"role": "user",
|
| 123 |
+
"content": [
|
| 124 |
+
{"type": "image", "image": image},
|
| 125 |
+
{"type": "text", "text": text},
|
| 126 |
+
]
|
| 127 |
+
}]
|
| 128 |
+
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 129 |
+
inputs = processor(
|
| 130 |
+
text=[prompt_full],
|
| 131 |
+
images=[image],
|
| 132 |
+
return_tensors="pt",
|
| 133 |
+
padding=True,
|
| 134 |
+
truncation=False,
|
| 135 |
+
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 136 |
+
).to(device)
|
| 137 |
+
|
| 138 |
+
streamer = TextIteratorStreamer(
|
| 139 |
+
tokenizer if model_name == "Llama-3.1-Nemotron-Nano-VL-8B-V1" else processor,
|
| 140 |
+
skip_prompt=True,
|
| 141 |
+
skip_special_tokens=True
|
| 142 |
+
)
|
| 143 |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
| 144 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 145 |
thread.start()
|
|
|
|
| 152 |
|
| 153 |
@spaces.GPU
|
| 154 |
def generate_video(model_name: str, text: str, video_path: str,
|
| 155 |
+
max_new_tokens: int = 1024,
|
| 156 |
+
temperature: float = 0.6,
|
| 157 |
+
top_p: float = 0.9,
|
| 158 |
+
top_k: int = 50,
|
| 159 |
+
repetition_penalty: float = 1.2):
|
|
|
|
|
|
|
|
|
|
| 160 |
if model_name == "Llama-3.1-Nemotron-Nano-VL-8B-V1":
|
| 161 |
processor = processor_m
|
| 162 |
+
tokenizer = tokenizer_m
|
| 163 |
model = model_m
|
| 164 |
elif model_name == "SpaceThinker-3B":
|
| 165 |
processor = processor_z
|
|
|
|
| 176 |
return
|
| 177 |
|
| 178 |
frames = downsample_video(video_path)
|
| 179 |
+
if model_name == "Llama-3.1-Nemotron-Nano-VL-8B-V1":
|
| 180 |
+
# Construct a simple prompt for Llama-3.1-Nemotron-Nano-VL-8B-V1
|
| 181 |
+
prompt_parts = ["<|startoftext|>You are a helpful assistant.<|endoftext|>", text]
|
| 182 |
+
for frame in frames:
|
| 183 |
+
image, timestamp = frame
|
| 184 |
+
prompt_parts.append(f"Frame {timestamp}: <|image|>")
|
| 185 |
+
prompt_full = " ".join(prompt_parts) + "<|endoftext|>"
|
| 186 |
+
inputs = tokenizer(
|
| 187 |
+
prompt_full,
|
| 188 |
+
return_tensors="pt",
|
| 189 |
+
padding=True,
|
| 190 |
+
truncation=False,
|
| 191 |
+
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 192 |
+
).to(device)
|
| 193 |
+
# Process all frames
|
| 194 |
+
image_inputs = processor([frame[0] for frame in frames], return_tensors="pt").to(device)
|
| 195 |
+
inputs.update(image_inputs)
|
| 196 |
+
else:
|
| 197 |
+
messages = [
|
| 198 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
| 199 |
+
{"role": "user", "content": [{"type": "text", "text": text}]}
|
| 200 |
+
]
|
| 201 |
+
for frame in frames:
|
| 202 |
+
image, timestamp = frame
|
| 203 |
+
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
|
| 204 |
+
messages[1]["content"].append({"type": "image", "image": image})
|
| 205 |
+
inputs = processor.apply_chat_template(
|
| 206 |
+
messages,
|
| 207 |
+
tokenize=True,
|
| 208 |
+
add_generation_prompt=True,
|
| 209 |
+
return_dict=True,
|
| 210 |
+
return_tensors="pt",
|
| 211 |
+
truncation=False,
|
| 212 |
+
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 213 |
+
).to(device)
|
| 214 |
+
|
| 215 |
+
streamer = TextIteratorStreamer(
|
| 216 |
+
tokenizer if model_name == "Llama-3.1-Nemotron-Nano-VL-8B-V1" else processor,
|
| 217 |
+
skip_prompt=True,
|
| 218 |
+
skip_special_tokens=True
|
| 219 |
+
)
|
| 220 |
generation_kwargs = {
|
| 221 |
**inputs,
|
| 222 |
"streamer": streamer,
|