Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import os
|
|
| 2 |
import random
|
| 3 |
import uuid
|
| 4 |
import json
|
|
|
|
| 5 |
import time
|
| 6 |
import asyncio
|
| 7 |
from threading import Thread
|
|
@@ -19,11 +20,9 @@ from transformers import (
|
|
| 19 |
AutoTokenizer,
|
| 20 |
TextIteratorStreamer,
|
| 21 |
)
|
| 22 |
-
from transformers.image_utils import load_image
|
| 23 |
-
|
| 24 |
-
import subprocess
|
| 25 |
-
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 26 |
|
|
|
|
|
|
|
| 27 |
|
| 28 |
# Constants for text generation
|
| 29 |
MAX_MAX_NEW_TOKENS = 2048
|
|
@@ -32,8 +31,8 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
| 32 |
|
| 33 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 34 |
|
| 35 |
-
# Load
|
| 36 |
-
MODEL_ID_M = "
|
| 37 |
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
| 38 |
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 39 |
MODEL_ID_M,
|
|
@@ -42,7 +41,7 @@ model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
| 42 |
).to(device).eval()
|
| 43 |
|
| 44 |
# Load Space Thinker
|
| 45 |
-
MODEL_ID_Z = "
|
| 46 |
processor_z = AutoProcessor.from_pretrained(MODEL_ID_Z, trust_remote_code=True)
|
| 47 |
model_z = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 48 |
MODEL_ID_Z,
|
|
@@ -50,7 +49,14 @@ model_z = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
| 50 |
torch_dtype=torch.float16
|
| 51 |
).to(device).eval()
|
| 52 |
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
def downsample_video(video_path):
|
| 56 |
"""
|
|
@@ -83,12 +89,15 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 83 |
"""
|
| 84 |
Generates responses using the selected model for image input.
|
| 85 |
"""
|
| 86 |
-
if model_name == "
|
| 87 |
processor = processor_m
|
| 88 |
model = model_m
|
| 89 |
-
elif model_name == "
|
| 90 |
processor = processor_z
|
| 91 |
model = model_z
|
|
|
|
|
|
|
|
|
|
| 92 |
else:
|
| 93 |
yield "Invalid model selected."
|
| 94 |
return
|
|
@@ -133,12 +142,15 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
| 133 |
"""
|
| 134 |
Generates responses using the selected model for video input.
|
| 135 |
"""
|
| 136 |
-
if model_name == "
|
| 137 |
processor = processor_m
|
| 138 |
model = model_m
|
| 139 |
-
elif model_name == "
|
| 140 |
processor = processor_z
|
| 141 |
model = model_z
|
|
|
|
|
|
|
|
|
|
| 142 |
else:
|
| 143 |
yield "Invalid model selected."
|
| 144 |
return
|
|
@@ -239,9 +251,9 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 239 |
with gr.Column():
|
| 240 |
output = gr.Textbox(label="Output", interactive=False, lines=2, scale=2)
|
| 241 |
model_choice = gr.Radio(
|
| 242 |
-
choices=["
|
| 243 |
label="Select Model",
|
| 244 |
-
value="
|
| 245 |
)
|
| 246 |
|
| 247 |
image_submit.click(
|
|
|
|
| 2 |
import random
|
| 3 |
import uuid
|
| 4 |
import json
|
| 5 |
+
import requests
|
| 6 |
import time
|
| 7 |
import asyncio
|
| 8 |
from threading import Thread
|
|
|
|
| 20 |
AutoTokenizer,
|
| 21 |
TextIteratorStreamer,
|
| 22 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
| 25 |
+
from transformers.image_utils import load_image
|
| 26 |
|
| 27 |
# Constants for text generation
|
| 28 |
MAX_MAX_NEW_TOKENS = 2048
|
|
|
|
| 31 |
|
| 32 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 33 |
|
| 34 |
+
# Load SkyCaptioner-V1
|
| 35 |
+
MODEL_ID_M = "Skywork/SkyCaptioner-V1"
|
| 36 |
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
| 37 |
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 38 |
MODEL_ID_M,
|
|
|
|
| 41 |
).to(device).eval()
|
| 42 |
|
| 43 |
# Load Space Thinker
|
| 44 |
+
MODEL_ID_Z = "remyxai/SpaceThinker-Qwen2.5VL-3B"
|
| 45 |
processor_z = AutoProcessor.from_pretrained(MODEL_ID_Z, trust_remote_code=True)
|
| 46 |
model_z = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 47 |
MODEL_ID_Z,
|
|
|
|
| 49 |
torch_dtype=torch.float16
|
| 50 |
).to(device).eval()
|
| 51 |
|
| 52 |
+
# Load blip2-opt-2.7b
|
| 53 |
+
MODEL_ID_K = "Salesforce/blip2-opt-2.7b"
|
| 54 |
+
processor_k = Blip2Processor.from_pretrained(MODEL_ID_K, trust_remote_code=True)
|
| 55 |
+
model_k = Blip2ForConditionalGeneration.from_pretrained(
|
| 56 |
+
MODEL_ID_K,
|
| 57 |
+
trust_remote_code=True,
|
| 58 |
+
torch_dtype=torch.float16
|
| 59 |
+
).to(device).eval()
|
| 60 |
|
| 61 |
def downsample_video(video_path):
|
| 62 |
"""
|
|
|
|
| 89 |
"""
|
| 90 |
Generates responses using the selected model for image input.
|
| 91 |
"""
|
| 92 |
+
if model_name == "SkyCaptioner-V1":
|
| 93 |
processor = processor_m
|
| 94 |
model = model_m
|
| 95 |
+
elif model_name == "SpaceThinker-3B":
|
| 96 |
processor = processor_z
|
| 97 |
model = model_z
|
| 98 |
+
elif model_name == "blip2-opt-2.7b":
|
| 99 |
+
processor = processor_k
|
| 100 |
+
model = model_k
|
| 101 |
else:
|
| 102 |
yield "Invalid model selected."
|
| 103 |
return
|
|
|
|
| 142 |
"""
|
| 143 |
Generates responses using the selected model for video input.
|
| 144 |
"""
|
| 145 |
+
if model_name == "SkyCaptioner-V1":
|
| 146 |
processor = processor_m
|
| 147 |
model = model_m
|
| 148 |
+
elif model_name == "SpaceThinker-3B":
|
| 149 |
processor = processor_z
|
| 150 |
model = model_z
|
| 151 |
+
elif model_name == "blip2-opt-2.7b":
|
| 152 |
+
processor = processor_k
|
| 153 |
+
model = model_k
|
| 154 |
else:
|
| 155 |
yield "Invalid model selected."
|
| 156 |
return
|
|
|
|
| 251 |
with gr.Column():
|
| 252 |
output = gr.Textbox(label="Output", interactive=False, lines=2, scale=2)
|
| 253 |
model_choice = gr.Radio(
|
| 254 |
+
choices=["SkyCaptioner-V1", "SpaceThinker-3B", "blip2-opt-2.7b"],
|
| 255 |
label="Select Model",
|
| 256 |
+
value="SkyCaptioner-V1"
|
| 257 |
)
|
| 258 |
|
| 259 |
image_submit.click(
|