Spaces:
Running
on
Zero
Running
on
Zero
update app
Browse files
app.py
CHANGED
|
@@ -101,6 +101,7 @@ MODEL_ID_N = "prithivMLmods/DeepCaption-VLA-7B"
|
|
| 101 |
processor_n = AutoProcessor.from_pretrained(MODEL_ID_N, trust_remote_code=True)
|
| 102 |
model_n = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 103 |
MODEL_ID_N,
|
|
|
|
| 104 |
trust_remote_code=True,
|
| 105 |
torch_dtype=torch.float16
|
| 106 |
).to(device).eval()
|
|
@@ -110,6 +111,7 @@ MODEL_ID_M = "Skywork/SkyCaptioner-V1"
|
|
| 110 |
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
| 111 |
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 112 |
MODEL_ID_M,
|
|
|
|
| 113 |
trust_remote_code=True,
|
| 114 |
torch_dtype=torch.float16
|
| 115 |
).to(device).eval()
|
|
@@ -119,6 +121,7 @@ MODEL_ID_Z = "remyxai/SpaceThinker-Qwen2.5VL-3B"
|
|
| 119 |
processor_z = AutoProcessor.from_pretrained(MODEL_ID_Z, trust_remote_code=True)
|
| 120 |
model_z = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 121 |
MODEL_ID_Z,
|
|
|
|
| 122 |
trust_remote_code=True,
|
| 123 |
torch_dtype=torch.float16
|
| 124 |
).to(device).eval()
|
|
@@ -128,6 +131,7 @@ MODEL_ID_K = "prithivMLmods/coreOCR-7B-050325-preview"
|
|
| 128 |
processor_k = AutoProcessor.from_pretrained(MODEL_ID_K, trust_remote_code=True)
|
| 129 |
model_k = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 130 |
MODEL_ID_K,
|
|
|
|
| 131 |
trust_remote_code=True,
|
| 132 |
torch_dtype=torch.float16
|
| 133 |
).to(device).eval()
|
|
@@ -137,6 +141,7 @@ MODEL_ID_Y = "remyxai/SpaceOm"
|
|
| 137 |
processor_y = AutoProcessor.from_pretrained(MODEL_ID_Y, trust_remote_code=True)
|
| 138 |
model_y = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 139 |
MODEL_ID_Y,
|
|
|
|
| 140 |
trust_remote_code=True,
|
| 141 |
torch_dtype=torch.float16
|
| 142 |
).to(device).eval()
|
|
@@ -310,7 +315,7 @@ css = """
|
|
| 310 |
"""
|
| 311 |
|
| 312 |
# Create the Gradio Interface
|
| 313 |
-
with gr.Blocks(
|
| 314 |
gr.Markdown("# **VisionScope R2**", elem_id="main-title")
|
| 315 |
with gr.Row():
|
| 316 |
with gr.Column(scale=2):
|
|
@@ -333,7 +338,7 @@ with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
|
| 333 |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
| 334 |
with gr.Column(scale=3):
|
| 335 |
gr.Markdown("## Output", elem_id="output-title")
|
| 336 |
-
output = gr.Textbox(label="Raw Output Stream", interactive=
|
| 337 |
with gr.Accordion("(Result.md)", open=False):
|
| 338 |
markdown_output = gr.Markdown(label="Formatted Result")
|
| 339 |
model_choice = gr.Radio(
|
|
@@ -353,4 +358,4 @@ with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
|
| 353 |
)
|
| 354 |
|
| 355 |
if __name__ == "__main__":
|
| 356 |
-
demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)
|
|
|
|
| 101 |
processor_n = AutoProcessor.from_pretrained(MODEL_ID_N, trust_remote_code=True)
|
| 102 |
model_n = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 103 |
MODEL_ID_N,
|
| 104 |
+
attn_implementation="flash_attention_2",
|
| 105 |
trust_remote_code=True,
|
| 106 |
torch_dtype=torch.float16
|
| 107 |
).to(device).eval()
|
|
|
|
| 111 |
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
| 112 |
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 113 |
MODEL_ID_M,
|
| 114 |
+
attn_implementation="flash_attention_2",
|
| 115 |
trust_remote_code=True,
|
| 116 |
torch_dtype=torch.float16
|
| 117 |
).to(device).eval()
|
|
|
|
| 121 |
processor_z = AutoProcessor.from_pretrained(MODEL_ID_Z, trust_remote_code=True)
|
| 122 |
model_z = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 123 |
MODEL_ID_Z,
|
| 124 |
+
attn_implementation="flash_attention_2",
|
| 125 |
trust_remote_code=True,
|
| 126 |
torch_dtype=torch.float16
|
| 127 |
).to(device).eval()
|
|
|
|
| 131 |
processor_k = AutoProcessor.from_pretrained(MODEL_ID_K, trust_remote_code=True)
|
| 132 |
model_k = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 133 |
MODEL_ID_K,
|
| 134 |
+
attn_implementation="flash_attention_2",
|
| 135 |
trust_remote_code=True,
|
| 136 |
torch_dtype=torch.float16
|
| 137 |
).to(device).eval()
|
|
|
|
| 141 |
processor_y = AutoProcessor.from_pretrained(MODEL_ID_Y, trust_remote_code=True)
|
| 142 |
model_y = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 143 |
MODEL_ID_Y,
|
| 144 |
+
attn_implementation="flash_attention_2",
|
| 145 |
trust_remote_code=True,
|
| 146 |
torch_dtype=torch.float16
|
| 147 |
).to(device).eval()
|
|
|
|
| 315 |
"""
|
| 316 |
|
| 317 |
# Create the Gradio Interface
|
| 318 |
+
with gr.Blocks() as demo:
|
| 319 |
gr.Markdown("# **VisionScope R2**", elem_id="main-title")
|
| 320 |
with gr.Row():
|
| 321 |
with gr.Column(scale=2):
|
|
|
|
| 338 |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
| 339 |
with gr.Column(scale=3):
|
| 340 |
gr.Markdown("## Output", elem_id="output-title")
|
| 341 |
+
output = gr.Textbox(label="Raw Output Stream", interactive=True, lines=11)
|
| 342 |
with gr.Accordion("(Result.md)", open=False):
|
| 343 |
markdown_output = gr.Markdown(label="Formatted Result")
|
| 344 |
model_choice = gr.Radio(
|
|
|
|
| 358 |
)
|
| 359 |
|
| 360 |
if __name__ == "__main__":
|
| 361 |
+
demo.queue(max_size=50).launch(css=css, theme=steel_blue_theme, mcp_server=True, ssr_mode=False, show_error=True)
|