Update app.py
Browse files
app.py
CHANGED
|
@@ -4,14 +4,14 @@ from langchain_community.document_loaders import PyPDFLoader
|
|
| 4 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 6 |
from langchain_community.vectorstores import FAISS
|
| 7 |
-
|
| 8 |
from langchain_openai import ChatOpenAI
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
-
def
|
| 12 |
-
if pdf_path is None or question.strip() == "":
|
| 13 |
-
return "Please upload a PDF and enter a question."
|
| 14 |
-
|
| 15 |
loader = PyPDFLoader(pdf_path)
|
| 16 |
docs = loader.load()
|
| 17 |
|
|
@@ -20,20 +20,38 @@ def run_qa(pdf_path, question):
|
|
| 20 |
|
| 21 |
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 22 |
vectordb = FAISS.from_documents(chunks, embeddings)
|
|
|
|
| 23 |
|
| 24 |
llm = ChatOpenAI(temperature=0)
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
)
|
| 31 |
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
|
| 35 |
-
source_docs = result.get("source_documents", [])
|
| 36 |
-
sources = "\n\n".join([d.page_content[:500] for d in source_docs[:2]])
|
| 37 |
|
| 38 |
return f"### Answer\n{answer_text}\n\n---\n### Sources\n{sources}"
|
| 39 |
|
|
|
|
| 4 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 6 |
from langchain_community.vectorstores import FAISS
|
| 7 |
+
|
| 8 |
from langchain_openai import ChatOpenAI
|
| 9 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 10 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 11 |
+
from langchain.chains import create_retrieval_chain
|
| 12 |
|
| 13 |
|
| 14 |
+
def build_chain(pdf_path: str):
|
|
|
|
|
|
|
|
|
|
| 15 |
loader = PyPDFLoader(pdf_path)
|
| 16 |
docs = loader.load()
|
| 17 |
|
|
|
|
| 20 |
|
| 21 |
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 22 |
vectordb = FAISS.from_documents(chunks, embeddings)
|
| 23 |
+
retriever = vectordb.as_retriever(search_kwargs={"k": 4})
|
| 24 |
|
| 25 |
llm = ChatOpenAI(temperature=0)
|
| 26 |
|
| 27 |
+
prompt = ChatPromptTemplate.from_template(
|
| 28 |
+
"""You are a helpful assistant. Answer the question using ONLY the provided context.
|
| 29 |
+
If the answer is not in the context, say you don't know.
|
| 30 |
+
|
| 31 |
+
<context>
|
| 32 |
+
{context}
|
| 33 |
+
</context>
|
| 34 |
+
|
| 35 |
+
Question: {input}
|
| 36 |
+
"""
|
| 37 |
)
|
| 38 |
|
| 39 |
+
doc_chain = create_stuff_documents_chain(llm, prompt)
|
| 40 |
+
retrieval_chain = create_retrieval_chain(retriever, doc_chain)
|
| 41 |
+
return retrieval_chain
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def run_qa(pdf_path, question):
|
| 45 |
+
if pdf_path is None or question.strip() == "":
|
| 46 |
+
return "Please upload a PDF and enter a question."
|
| 47 |
+
|
| 48 |
+
chain = build_chain(pdf_path)
|
| 49 |
+
result = chain.invoke({"input": question})
|
| 50 |
+
|
| 51 |
+
answer_text = result.get("answer", "")
|
| 52 |
+
ctx_docs = result.get("context", []) or []
|
| 53 |
|
| 54 |
+
sources = "\n\n".join([d.page_content[:500] for d in ctx_docs[:2]])
|
|
|
|
|
|
|
| 55 |
|
| 56 |
return f"### Answer\n{answer_text}\n\n---\n### Sources\n{sources}"
|
| 57 |
|