Spaces:
Sleeping
Sleeping
| import pickle | |
| import tensorflow as tf | |
| import pandas as pd | |
| import numpy as np | |
| # CONTANTS | |
| MAX_LENGTH = 40 | |
| # VOCABULARY_SIZE = 10000 | |
| BATCH_SIZE = 32 | |
| BUFFER_SIZE = 1000 | |
| EMBEDDING_DIM = 512 | |
| UNITS = 512 | |
| # LOADING DATA | |
| vocab = pickle.load(open('saved_vocabulary/vocab_coco.file', 'rb')) | |
| tokenizer = tf.keras.layers.TextVectorization( | |
| # max_tokens=VOCABULARY_SIZE, | |
| standardize=None, | |
| output_sequence_length=MAX_LENGTH, | |
| vocabulary=vocab | |
| ) | |
| idx2word = tf.keras.layers.StringLookup( | |
| mask_token="", | |
| vocabulary=tokenizer.get_vocabulary(), | |
| invert=True | |
| ) | |
| # MODEL | |
| def CNN_Encoder(): | |
| inception_v3 = tf.keras.applications.InceptionV3( | |
| include_top=False, | |
| weights='imagenet' | |
| ) | |
| output = inception_v3.output | |
| output = tf.keras.layers.Reshape( | |
| (-1, output.shape[-1]))(output) | |
| cnn_model = tf.keras.models.Model(inception_v3.input, output) | |
| return cnn_model | |
| class TransformerEncoderLayer(tf.keras.layers.Layer): | |
| def __init__(self, embed_dim, num_heads): | |
| super().__init__() | |
| self.layer_norm_1 = tf.keras.layers.LayerNormalization() | |
| self.layer_norm_2 = tf.keras.layers.LayerNormalization() | |
| self.attention = tf.keras.layers.MultiHeadAttention( | |
| num_heads=num_heads, key_dim=embed_dim) | |
| self.dense = tf.keras.layers.Dense(embed_dim, activation="relu") | |
| def call(self, x, training): | |
| x = self.layer_norm_1(x) | |
| x = self.dense(x) | |
| attn_output = self.attention( | |
| query=x, | |
| value=x, | |
| key=x, | |
| attention_mask=None, | |
| training=training | |
| ) | |
| x = self.layer_norm_2(x + attn_output) | |
| return x | |
| class Embeddings(tf.keras.layers.Layer): | |
| def __init__(self, vocab_size, embed_dim, max_len): | |
| super().__init__() | |
| self.token_embeddings = tf.keras.layers.Embedding( | |
| vocab_size, embed_dim) | |
| self.position_embeddings = tf.keras.layers.Embedding( | |
| max_len, embed_dim, input_shape=(None, max_len)) | |
| def call(self, input_ids): | |
| length = tf.shape(input_ids)[-1] | |
| position_ids = tf.range(start=0, limit=length, delta=1) | |
| position_ids = tf.expand_dims(position_ids, axis=0) | |
| token_embeddings = self.token_embeddings(input_ids) | |
| position_embeddings = self.position_embeddings(position_ids) | |
| return token_embeddings + position_embeddings | |
| class TransformerDecoderLayer(tf.keras.layers.Layer): | |
| def __init__(self, embed_dim, units, num_heads): | |
| super().__init__() | |
| self.embedding = Embeddings( | |
| tokenizer.vocabulary_size(), embed_dim, MAX_LENGTH) | |
| self.attention_1 = tf.keras.layers.MultiHeadAttention( | |
| num_heads=num_heads, key_dim=embed_dim, dropout=0.1 | |
| ) | |
| self.attention_2 = tf.keras.layers.MultiHeadAttention( | |
| num_heads=num_heads, key_dim=embed_dim, dropout=0.1 | |
| ) | |
| self.layernorm_1 = tf.keras.layers.LayerNormalization() | |
| self.layernorm_2 = tf.keras.layers.LayerNormalization() | |
| self.layernorm_3 = tf.keras.layers.LayerNormalization() | |
| self.ffn_layer_1 = tf.keras.layers.Dense(units, activation="relu") | |
| self.ffn_layer_2 = tf.keras.layers.Dense(embed_dim) | |
| self.out = tf.keras.layers.Dense(tokenizer.vocabulary_size(), activation="softmax") | |
| self.dropout_1 = tf.keras.layers.Dropout(0.3) | |
| self.dropout_2 = tf.keras.layers.Dropout(0.5) | |
| def call(self, input_ids, encoder_output, training, mask=None): | |
| embeddings = self.embedding(input_ids) | |
| combined_mask = None | |
| padding_mask = None | |
| if mask is not None: | |
| causal_mask = self.get_causal_attention_mask(embeddings) | |
| padding_mask = tf.cast(mask[:, :, tf.newaxis], dtype=tf.int32) | |
| combined_mask = tf.cast(mask[:, tf.newaxis, :], dtype=tf.int32) | |
| combined_mask = tf.minimum(combined_mask, causal_mask) | |
| attn_output_1 = self.attention_1( | |
| query=embeddings, | |
| value=embeddings, | |
| key=embeddings, | |
| attention_mask=combined_mask, | |
| training=training | |
| ) | |
| out_1 = self.layernorm_1(embeddings + attn_output_1) | |
| attn_output_2 = self.attention_2( | |
| query=out_1, | |
| value=encoder_output, | |
| key=encoder_output, | |
| attention_mask=padding_mask, | |
| training=training | |
| ) | |
| out_2 = self.layernorm_2(out_1 + attn_output_2) | |
| ffn_out = self.ffn_layer_1(out_2) | |
| ffn_out = self.dropout_1(ffn_out, training=training) | |
| ffn_out = self.ffn_layer_2(ffn_out) | |
| ffn_out = self.layernorm_3(ffn_out + out_2) | |
| ffn_out = self.dropout_2(ffn_out, training=training) | |
| preds = self.out(ffn_out) | |
| return preds | |
| def get_causal_attention_mask(self, inputs): | |
| input_shape = tf.shape(inputs) | |
| batch_size, sequence_length = input_shape[0], input_shape[1] | |
| i = tf.range(sequence_length)[:, tf.newaxis] | |
| j = tf.range(sequence_length) | |
| mask = tf.cast(i >= j, dtype="int32") | |
| mask = tf.reshape(mask, (1, input_shape[1], input_shape[1])) | |
| mult = tf.concat( | |
| [tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)], | |
| axis=0 | |
| ) | |
| return tf.tile(mask, mult) | |
| class ImageCaptioningModel(tf.keras.Model): | |
| def __init__(self, cnn_model, encoder, decoder, image_aug=None): | |
| super().__init__() | |
| self.cnn_model = cnn_model | |
| self.encoder = encoder | |
| self.decoder = decoder | |
| self.image_aug = image_aug | |
| self.loss_tracker = tf.keras.metrics.Mean(name="loss") | |
| self.acc_tracker = tf.keras.metrics.Mean(name="accuracy") | |
| def calculate_loss(self, y_true, y_pred, mask): | |
| loss = self.loss(y_true, y_pred) | |
| mask = tf.cast(mask, dtype=loss.dtype) | |
| loss *= mask | |
| return tf.reduce_sum(loss) / tf.reduce_sum(mask) | |
| def calculate_accuracy(self, y_true, y_pred, mask): | |
| accuracy = tf.equal(y_true, tf.argmax(y_pred, axis=2)) | |
| accuracy = tf.math.logical_and(mask, accuracy) | |
| accuracy = tf.cast(accuracy, dtype=tf.float32) | |
| mask = tf.cast(mask, dtype=tf.float32) | |
| return tf.reduce_sum(accuracy) / tf.reduce_sum(mask) | |
| def compute_loss_and_acc(self, img_embed, captions, training=True): | |
| encoder_output = self.encoder(img_embed, training=True) | |
| y_input = captions[:, :-1] | |
| y_true = captions[:, 1:] | |
| mask = (y_true != 0) | |
| y_pred = self.decoder( | |
| y_input, encoder_output, training=True, mask=mask | |
| ) | |
| loss = self.calculate_loss(y_true, y_pred, mask) | |
| acc = self.calculate_accuracy(y_true, y_pred, mask) | |
| return loss, acc | |
| def train_step(self, batch): | |
| imgs, captions = batch | |
| if self.image_aug: | |
| imgs = self.image_aug(imgs) | |
| img_embed = self.cnn_model(imgs) | |
| with tf.GradientTape() as tape: | |
| loss, acc = self.compute_loss_and_acc( | |
| img_embed, captions | |
| ) | |
| train_vars = ( | |
| self.encoder.trainable_variables + self.decoder.trainable_variables | |
| ) | |
| grads = tape.gradient(loss, train_vars) | |
| self.optimizer.apply_gradients(zip(grads, train_vars)) | |
| self.loss_tracker.update_state(loss) | |
| self.acc_tracker.update_state(acc) | |
| return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()} | |
| def test_step(self, batch): | |
| imgs, captions = batch | |
| img_embed = self.cnn_model(imgs) | |
| loss, acc = self.compute_loss_and_acc( | |
| img_embed, captions, training=False | |
| ) | |
| self.loss_tracker.update_state(loss) | |
| self.acc_tracker.update_state(acc) | |
| return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()} | |
| def metrics(self): | |
| return [self.loss_tracker, self.acc_tracker] | |
| def load_image_from_path(img_path): | |
| img = tf.io.read_file(img_path) | |
| img = tf.io.decode_jpeg(img, channels=3) | |
| img = tf.keras.layers.Resizing(299, 299)(img) | |
| img = tf.keras.applications.inception_v3.preprocess_input(img) | |
| return img | |
| def generate_caption(img, caption_model, add_noise=False): | |
| if isinstance(img, str): | |
| img = load_image_from_path(img) | |
| if add_noise == True: | |
| noise = tf.random.normal(img.shape)*0.1 | |
| img = (img + noise) | |
| img = (img - tf.reduce_min(img))/(tf.reduce_max(img) - tf.reduce_min(img)) | |
| img = tf.expand_dims(img, axis=0) | |
| img_embed = caption_model.cnn_model(img) | |
| img_encoded = caption_model.encoder(img_embed, training=False) | |
| y_inp = '[start]' | |
| for i in range(MAX_LENGTH-1): | |
| tokenized = tokenizer([y_inp])[:, :-1] | |
| mask = tf.cast(tokenized != 0, tf.int32) | |
| pred = caption_model.decoder( | |
| tokenized, img_encoded, training=False, mask=mask) | |
| pred_idx = np.argmax(pred[0, i, :]) | |
| pred_word = idx2word(pred_idx).numpy().decode('utf-8') | |
| if pred_word == '[end]': | |
| break | |
| y_inp += ' ' + pred_word | |
| y_inp = y_inp.replace('[start] ', '') | |
| return y_inp | |
| def get_caption_model(): | |
| encoder = TransformerEncoderLayer(EMBEDDING_DIM, 1) | |
| decoder = TransformerDecoderLayer(EMBEDDING_DIM, UNITS, 8) | |
| cnn_model = CNN_Encoder() | |
| caption_model = ImageCaptioningModel( | |
| cnn_model=cnn_model, encoder=encoder, decoder=decoder, image_aug=None, | |
| ) | |
| def call_fn(batch, training): | |
| return batch | |
| caption_model.call = call_fn | |
| sample_x, sample_y = tf.random.normal((1, 299, 299, 3)), tf.zeros((1, 40)) | |
| caption_model((sample_x, sample_y)) | |
| sample_img_embed = caption_model.cnn_model(sample_x) | |
| sample_enc_out = caption_model.encoder(sample_img_embed, training=False) | |
| caption_model.decoder(sample_y, sample_enc_out, training=False) | |
| try: | |
| caption_model.load_weights('saved_models/image_captioning_coco_weights.h5') | |
| except FileNotFoundError: | |
| caption_model.load_weights('Image-Captioning/saved_models/image_captioning_coco_weights.h5') | |
| return caption_model | |