Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,6 +9,7 @@ import gradio as gr
|
|
| 9 |
import subprocess
|
| 10 |
from PIL import Image
|
| 11 |
|
|
|
|
| 12 |
|
| 13 |
def video_to_frames(video_path, output_folder):
|
| 14 |
vidcap = cv2.VideoCapture(video_path)
|
|
@@ -30,6 +31,7 @@ def video_to_frames(video_path, output_folder):
|
|
| 30 |
|
| 31 |
def frames_to_video(frame_folder, video_path, image_path, frame_count,fps):
|
| 32 |
print("ImagePath",image_path)
|
|
|
|
| 33 |
frames = [f for f in os.listdir(frame_folder) if f.endswith('.jpg')]
|
| 34 |
frames.sort(key=lambda x: int(x.split('_')[1].split('.')[0])) # Sort frames in ascending order
|
| 35 |
|
|
@@ -47,6 +49,7 @@ def frames_to_video(frame_folder, video_path, image_path, frame_count,fps):
|
|
| 47 |
face_enhancer = gfpgan.GFPGANer(model_path="GFPGANv1.4.pth", upscale=1, device='cuda')
|
| 48 |
|
| 49 |
for i in tqdm(range(frame_count), desc="Converting frames to video"):
|
|
|
|
| 50 |
img1 = cv2.imread(os.path.join(frame_folder, frames[i]))
|
| 51 |
#img2_pil = Image.open(image_path)
|
| 52 |
#img2_cv2 = cv2.cvtColor(np.array(img2_pil), cv2.COLOR_RGB2BGR)
|
|
@@ -68,7 +71,6 @@ def frames_to_video(frame_folder, video_path, image_path, frame_count,fps):
|
|
| 68 |
else:
|
| 69 |
out.write(img1)
|
| 70 |
progress = int((i + 1) / frame_count * 100)
|
| 71 |
-
print(progress,end="")
|
| 72 |
out.release()
|
| 73 |
|
| 74 |
print(f"Video saved at {video_path}.")
|
|
@@ -76,8 +78,8 @@ def frames_to_video(frame_folder, video_path, image_path, frame_count,fps):
|
|
| 76 |
def face_swap(video_path, image_path):
|
| 77 |
output_folder = "Out_Frames"
|
| 78 |
frame_count = video_to_frames(video_path, output_folder)
|
| 79 |
-
if frame_count[0] >
|
| 80 |
-
frame_count[0] =
|
| 81 |
output_video_path = "output_video.mp4"
|
| 82 |
frames_to_video(output_folder, output_video_path, image_path, frame_count[0],frame_count[1])
|
| 83 |
return output_video_path
|
|
|
|
| 9 |
import subprocess
|
| 10 |
from PIL import Image
|
| 11 |
|
| 12 |
+
progress = 0
|
| 13 |
|
| 14 |
def video_to_frames(video_path, output_folder):
|
| 15 |
vidcap = cv2.VideoCapture(video_path)
|
|
|
|
| 31 |
|
| 32 |
def frames_to_video(frame_folder, video_path, image_path, frame_count,fps):
|
| 33 |
print("ImagePath",image_path)
|
| 34 |
+
global progress
|
| 35 |
frames = [f for f in os.listdir(frame_folder) if f.endswith('.jpg')]
|
| 36 |
frames.sort(key=lambda x: int(x.split('_')[1].split('.')[0])) # Sort frames in ascending order
|
| 37 |
|
|
|
|
| 49 |
face_enhancer = gfpgan.GFPGANer(model_path="GFPGANv1.4.pth", upscale=1, device='cuda')
|
| 50 |
|
| 51 |
for i in tqdm(range(frame_count), desc="Converting frames to video"):
|
| 52 |
+
print("Progress:",progress)
|
| 53 |
img1 = cv2.imread(os.path.join(frame_folder, frames[i]))
|
| 54 |
#img2_pil = Image.open(image_path)
|
| 55 |
#img2_cv2 = cv2.cvtColor(np.array(img2_pil), cv2.COLOR_RGB2BGR)
|
|
|
|
| 71 |
else:
|
| 72 |
out.write(img1)
|
| 73 |
progress = int((i + 1) / frame_count * 100)
|
|
|
|
| 74 |
out.release()
|
| 75 |
|
| 76 |
print(f"Video saved at {video_path}.")
|
|
|
|
| 78 |
def face_swap(video_path, image_path):
|
| 79 |
output_folder = "Out_Frames"
|
| 80 |
frame_count = video_to_frames(video_path, output_folder)
|
| 81 |
+
if frame_count[0] > 400:
|
| 82 |
+
frame_count[0] = 400
|
| 83 |
output_video_path = "output_video.mp4"
|
| 84 |
frames_to_video(output_folder, output_video_path, image_path, frame_count[0],frame_count[1])
|
| 85 |
return output_video_path
|