Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,15 +3,25 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
| 3 |
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
|
| 4 |
import torch
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
|
|
|
| 15 |
purrbert_model = DistilBertForSequenceClassification.from_pretrained("purrgpt-community/PurrBERT-v1")
|
| 16 |
purrbert_tokenizer = DistilBertTokenizerFast.from_pretrained("purrgpt-community/PurrBERT-v1")
|
| 17 |
purrbert_model.eval()
|
|
@@ -28,7 +38,7 @@ SYSTEM_PROMPT = (
|
|
| 28 |
"<|system|>\n"
|
| 29 |
"You are Tiny-Purr, a friendly, sarcastic, playful AI assistant in the form of a cat developed by PurrGPT Community. "
|
| 30 |
"You respond in a fun, cat-like personality, sometimes using puns and playful humor. "
|
| 31 |
-
"Always keep your replies safe
|
| 32 |
"<|system|>\n"
|
| 33 |
)
|
| 34 |
|
|
@@ -46,24 +56,27 @@ def format_history(history, message):
|
|
| 46 |
chat_prompt += f"<|user|>\n{message}\n<|assistant|>\n"
|
| 47 |
return chat_prompt
|
| 48 |
|
| 49 |
-
def respond(message, history):
|
| 50 |
-
#
|
| 51 |
if not is_safe_prompt(message):
|
| 52 |
return SAFETY_RESPONSE
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
| 54 |
full_prompt = format_history(history, message)
|
| 55 |
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
|
| 56 |
|
| 57 |
with torch.no_grad():
|
| 58 |
outputs = model.generate(
|
| 59 |
**inputs,
|
| 60 |
-
max_new_tokens=
|
| 61 |
temperature=0.4,
|
| 62 |
top_p=0.75,
|
| 63 |
do_sample=True,
|
| 64 |
pad_token_id=tokenizer.eos_token_id
|
| 65 |
)
|
| 66 |
-
|
| 67 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 68 |
generated_text = response[len(full_prompt):].strip()
|
| 69 |
|
|
@@ -74,13 +87,20 @@ def respond(message, history):
|
|
| 74 |
|
| 75 |
return assistant_response
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
|
| 4 |
import torch
|
| 5 |
|
| 6 |
+
# Model options
|
| 7 |
+
model_options = {
|
| 8 |
+
"Tiny-Purr-350M-merged": "purrgpt-community/Tiny-Purr-350M-merged",
|
| 9 |
+
"Tiny-Purr-1B": "purrgpt-community/Tiny-Purr-1B"
|
| 10 |
+
}
|
| 11 |
+
|
| 12 |
+
# Load models and tokenizers
|
| 13 |
+
models = {}
|
| 14 |
+
tokenizers = {}
|
| 15 |
+
for name, model_id in model_options.items():
|
| 16 |
+
tokenizers[name] = AutoTokenizer.from_pretrained(model_id)
|
| 17 |
+
models[name] = AutoModelForCausalLM.from_pretrained(
|
| 18 |
+
model_id,
|
| 19 |
+
device_map="auto",
|
| 20 |
+
torch_dtype=torch.bfloat16
|
| 21 |
+
)
|
| 22 |
+
models[name].eval()
|
| 23 |
|
| 24 |
+
# PurrBERT safety model
|
| 25 |
purrbert_model = DistilBertForSequenceClassification.from_pretrained("purrgpt-community/PurrBERT-v1")
|
| 26 |
purrbert_tokenizer = DistilBertTokenizerFast.from_pretrained("purrgpt-community/PurrBERT-v1")
|
| 27 |
purrbert_model.eval()
|
|
|
|
| 38 |
"<|system|>\n"
|
| 39 |
"You are Tiny-Purr, a friendly, sarcastic, playful AI assistant in the form of a cat developed by PurrGPT Community. "
|
| 40 |
"You respond in a fun, cat-like personality, sometimes using puns and playful humor. "
|
| 41 |
+
"Always keep your replies safe and friendly.\n"
|
| 42 |
"<|system|>\n"
|
| 43 |
)
|
| 44 |
|
|
|
|
| 56 |
chat_prompt += f"<|user|>\n{message}\n<|assistant|>\n"
|
| 57 |
return chat_prompt
|
| 58 |
|
| 59 |
+
def respond(message, history, model_choice):
|
| 60 |
+
# Safety check
|
| 61 |
if not is_safe_prompt(message):
|
| 62 |
return SAFETY_RESPONSE
|
| 63 |
+
|
| 64 |
+
tokenizer = tokenizers[model_choice]
|
| 65 |
+
model = models[model_choice]
|
| 66 |
+
|
| 67 |
full_prompt = format_history(history, message)
|
| 68 |
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
|
| 69 |
|
| 70 |
with torch.no_grad():
|
| 71 |
outputs = model.generate(
|
| 72 |
**inputs,
|
| 73 |
+
max_new_tokens=512,
|
| 74 |
temperature=0.4,
|
| 75 |
top_p=0.75,
|
| 76 |
do_sample=True,
|
| 77 |
pad_token_id=tokenizer.eos_token_id
|
| 78 |
)
|
| 79 |
+
|
| 80 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 81 |
generated_text = response[len(full_prompt):].strip()
|
| 82 |
|
|
|
|
| 87 |
|
| 88 |
return assistant_response
|
| 89 |
|
| 90 |
+
# Gradio interface
|
| 91 |
+
with gr.Blocks() as demo:
|
| 92 |
+
gr.Markdown("## Tiny-Purr Chat with Model Selection")
|
| 93 |
+
model_selector = gr.Dropdown(choices=list(model_options.keys()), value="Tiny-Purr-350M-merged", label="Choose Model")
|
| 94 |
+
chat = gr.Chatbot()
|
| 95 |
+
msg = gr.Textbox(label="Your Message")
|
| 96 |
+
submit_btn = gr.Button("Send")
|
| 97 |
+
|
| 98 |
+
def chat_interaction(message, history, model_choice):
|
| 99 |
+
response = respond(message, history, model_choice)
|
| 100 |
+
history = history + [(message, response)]
|
| 101 |
+
return history, history
|
| 102 |
+
|
| 103 |
+
submit_btn.click(chat_interaction, [msg, chat, model_selector], [chat, chat])
|
| 104 |
+
msg.submit(chat_interaction, [msg, chat, model_selector], [chat, chat])
|
| 105 |
+
|
| 106 |
+
demo.launch()
|