Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -19,6 +19,9 @@ import requests
|
|
| 19 |
import uvicorn
|
| 20 |
import re
|
| 21 |
from fastapi.staticfiles import StaticFiles
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
app = FastAPI()
|
| 24 |
|
|
@@ -40,23 +43,17 @@ class CodeExecutionResult:
|
|
| 40 |
API_URL = "https://pvanand-code-execution-files-v5.hf.space"
|
| 41 |
|
| 42 |
@tool
|
| 43 |
-
def execute_python(code: str
|
| 44 |
"""Execute Python code in an IPython interactiveshell and return the output.
|
| 45 |
The returned artifacts (if present) are automatically rendered in the UI and visible to the user.
|
| 46 |
Args:
|
| 47 |
-
code:
|
| 48 |
|
| 49 |
Available Libraries:
|
| 50 |
-
# Use
|
| 51 |
-
|
| 52 |
-
# Remove the ticker level from columns if it exists
|
| 53 |
-
yf_data = yf.download(symbol, start=start_date, end=end_date)
|
| 54 |
-
if isinstance(yf_data.columns, pd.MultiIndex):
|
| 55 |
-
yf_data.columns = yf_data.columns.get_level_values(0)
|
| 56 |
-
|
| 57 |
-
matplotlib
|
| 58 |
-
pandas
|
| 59 |
plotly
|
|
|
|
| 60 |
groq
|
| 61 |
yfinance
|
| 62 |
numpy
|
|
@@ -98,10 +95,24 @@ def execute_python(code: str) -> str:
|
|
| 98 |
# Configure the memory and model"
|
| 99 |
memory = MemorySaver()
|
| 100 |
model = ChatOpenAI(model="gpt-4o-mini", streaming=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
def state_modifier(state) -> list[BaseMessage]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
return trim_messages(
|
| 104 |
-
|
| 105 |
token_counter=len,
|
| 106 |
max_tokens=16000,
|
| 107 |
strategy="last",
|
|
|
|
| 19 |
import uvicorn
|
| 20 |
import re
|
| 21 |
from fastapi.staticfiles import StaticFiles
|
| 22 |
+
from langchain_core.runnables import RunnableConfig
|
| 23 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 24 |
+
from datetime import datetime
|
| 25 |
|
| 26 |
app = FastAPI()
|
| 27 |
|
|
|
|
| 43 |
API_URL = "https://pvanand-code-execution-files-v5.hf.space"
|
| 44 |
|
| 45 |
@tool
|
| 46 |
+
def execute_python(code: str, config: RunnableConfig):
|
| 47 |
"""Execute Python code in an IPython interactiveshell and return the output.
|
| 48 |
The returned artifacts (if present) are automatically rendered in the UI and visible to the user.
|
| 49 |
Args:
|
| 50 |
+
code: Valid Python code with correct indentation and syntax including necessary imports.
|
| 51 |
|
| 52 |
Available Libraries:
|
| 53 |
+
# Use Plotly for creating visualizations
|
| 54 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
plotly
|
| 56 |
+
pandas
|
| 57 |
groq
|
| 58 |
yfinance
|
| 59 |
numpy
|
|
|
|
| 95 |
# Configure the memory and model"
|
| 96 |
memory = MemorySaver()
|
| 97 |
model = ChatOpenAI(model="gpt-4o-mini", streaming=True)
|
| 98 |
+
prompt = ChatPromptTemplate.from_messages([
|
| 99 |
+
("system", f"You are a Data Visualization assistant.You have access to a jupyter client with access to internet for python code execution.\
|
| 100 |
+
Your taks is to assist users with your data analysis and visualization expertise. Use Plotly for creating visualizations. Today's date is \
|
| 101 |
+
{datetime.now().strftime('%Y-%m-%d')}. The current folder contains the following files: {{collection_files}}"),
|
| 102 |
+
("placeholder", "{messages}"),
|
| 103 |
+
])
|
| 104 |
|
| 105 |
def state_modifier(state) -> list[BaseMessage]:
|
| 106 |
+
collection_files = "None"
|
| 107 |
+
# Format the prompt with the current state
|
| 108 |
+
formatted_prompt = prompt.invoke({
|
| 109 |
+
"collection_files": collection_files,
|
| 110 |
+
"messages": state["messages"]
|
| 111 |
+
})
|
| 112 |
+
|
| 113 |
+
# Trim the messages
|
| 114 |
return trim_messages(
|
| 115 |
+
formatted_prompt,
|
| 116 |
token_counter=len,
|
| 117 |
max_tokens=16000,
|
| 118 |
strategy="last",
|