File size: 1,680 Bytes
268f498
 
 
 
 
025dfa3
268f498
025dfa3
268f498
 
 
025dfa3
 
 
 
268f498
025dfa3
 
268f498
025dfa3
268f498
 
025dfa3
268f498
 
025dfa3
 
268f498
 
025dfa3
 
268f498
 
025dfa3
 
268f498
025dfa3
268f498
025dfa3
268f498
 
025dfa3
268f498
 
 
 
 
025dfa3
268f498
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import gradio as gr
from PIL import Image
import torch
from transformers import AutoImageProcessor, AutoModelForImageClassification

# ----------------------
# Load model + processor
# ----------------------
processor = AutoImageProcessor.from_pretrained("prithivMLmods/Weather-Image-Classification")
model = AutoModelForImageClassification.from_pretrained("prithivMLmods/Weather-Image-Classification")

# ----------------------
# Inference function
# ----------------------
def classify_weather(image_file):
    try:
        # Open the uploaded file
        image = Image.open(image_file).convert("RGB")

        # Preprocess
        inputs = processor(images=[image], return_tensors="pt")

        # Inference
        with torch.no_grad():
            outputs = model(**inputs)
            logits = outputs.logits.squeeze()
            probs = torch.softmax(logits, dim=-1).tolist()
            labels = [model.config.id2label[i] for i in range(len(probs))]

            # Return label -> probability dictionary
            return dict(zip(labels, probs))

    except Exception as e:
        # Safe fallback if something unexpected happens
        return {"Error": 1.0}

# ----------------------
# Gradio interface
# ----------------------
iface = gr.Interface(
    fn=classify_weather,
    inputs=gr.File(file_types=[".jpg", ".png"]),  # Accept uploaded files
    outputs=gr.Label(num_top_classes=5, label="Weather Condition"),
    title="Weather Image Classification",
    description="Upload an image to classify the weather condition (sun, rain, snow, fog, or clouds)."
)

# Launch the Space with error reporting
if __name__ == "__main__":
    iface.launch(show_error=True)