File size: 1,282 Bytes
268f498
 
 
 
 
d7810bb
268f498
 
 
025dfa3
72527bd
268f498
72527bd
268f498
72527bd
268f498
 
025dfa3
 
268f498
025dfa3
72527bd
 
268f498
 
 
 
72527bd
268f498
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import gradio as gr
from PIL import Image
import torch
from transformers import AutoImageProcessor, AutoModelForImageClassification

# Load model
processor = AutoImageProcessor.from_pretrained("prithivMLmods/Weather-Image-Classification")
model = AutoModelForImageClassification.from_pretrained("prithivMLmods/Weather-Image-Classification")

# Inference function
def classify_weather(image_path):
    try:
        image = Image.open(image_path).convert("RGB")

        inputs = processor(images=[image], return_tensors="pt")
        with torch.no_grad():
            outputs = model(**inputs)
            logits = outputs.logits.squeeze()
            probs = torch.softmax(logits, dim=-1).tolist()
            labels = [model.config.id2label[i] for i in range(len(probs))]
            return dict(zip(labels, probs))
    except Exception as e:
        return {"Error": str(e)}

# Gradio interface
iface = gr.Interface(
    fn=classify_weather,
    inputs=gr.Image(type="filepath"),  # ✅ File path input
    outputs=gr.Label(num_top_classes=5, label="Weather Condition"),
    title="Weather Image Classification",
    description="Upload an image to classify the weather condition (sun, rain, snow, fog, or clouds)."
)

if __name__ == "__main__":
    iface.launch(show_error=True)