|
|
|
|
|
import gradio as gr
|
|
|
import numpy as np
|
|
|
from PIL import Image
|
|
|
import torch
|
|
|
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
processor = AutoImageProcessor.from_pretrained("prithivMLmods/Weather-Image-Classification")
|
|
|
model = AutoModelForImageClassification.from_pretrained("prithivMLmods/Weather-Image-Classification")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def classify_weather(image_input):
|
|
|
|
|
|
if isinstance(image_input, np.ndarray):
|
|
|
image = Image.fromarray(image_input.astype('uint8')).convert("RGB")
|
|
|
else:
|
|
|
raise TypeError("Only NumPy array input is supported for this Gradio interface.")
|
|
|
|
|
|
|
|
|
inputs = processor(images=image, return_tensors="pt")
|
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
outputs = model(**inputs)
|
|
|
logits = outputs.logits
|
|
|
predicted_class_id = logits.argmax(-1).item()
|
|
|
predicted_label = model.config.id2label[predicted_class_id]
|
|
|
|
|
|
return predicted_label
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
iface = gr.Interface(
|
|
|
fn=classify_weather,
|
|
|
inputs=gr.Image(type="numpy"),
|
|
|
outputs=gr.Label(num_top_classes=5, label="Weather Condition"),
|
|
|
title="Weather Image Classification",
|
|
|
description="Upload an image to classify the weather condition (sun, rain, snow, fog, or clouds)."
|
|
|
)
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
iface.launch()
|
|
|
|