File size: 27,971 Bytes
27f35e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
619db5d
27f35e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
"""
Base64 to Image Decoder
Decodes Base64 data to image files and optionally converts to MOL format using MolScribe
"""

import gradio as gr
import base64
import json
import tempfile
import os
import logging
from io import BytesIO
from typing import Optional, Tuple, List
import zipfile

# Import required libraries
try:
    from PIL import Image
    import numpy as np
    import torch
    # MolScribe will be lazy loaded
except ImportError as e:
    logging.error(f"Required library not found: {e}")
    print("Please install required dependencies:")
    print("pip install pillow")
    print("pip install numpy")
    print('pip install "gradio[mcp]"')
    print("pip install MolScribe")
    print("pip install torch")
    raise

# Logging setup
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Global variable to cache MolScribe model
_molscribe_model = None


def initialize_molscribe_model():
    """Initialize MolScribe model (CPU)"""
    global _molscribe_model
    
    if _molscribe_model is not None:
        return _molscribe_model
    
    try:
        import numpy as np
        import torch
        from molscribe import MolScribe
        from huggingface_hub import hf_hub_download
        
        logger.info("Downloading MolScribe checkpoint...")
        ckpt_path = hf_hub_download('yujieq/MolScribe', 'swin_base_char_aux_1m.pth')
        
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        logger.info(f"Initializing MolScribe on {device}...")
        
        logger.info(f"NumPy version: {np.__version__}")
        logger.info(f"PyTorch version: {torch.__version__}")
        
        _molscribe_model = MolScribe(ckpt_path, device=device)
        logger.info("MolScribe model ready")
        
        return _molscribe_model
        
    except Exception as e:
        logger.error(f"Failed to initialize MolScribe: {e}")
        raise


def run_molscribe_prediction(image_path: str):
    """Run MolScribe prediction"""
    try:
        import numpy as np
        import torch
        
        logger.info("Starting MolScribe prediction...")
        logger.info(f"NumPy available: {np.__version__}")
        logger.info(f"PyTorch available: {torch.__version__}")
        
        model = initialize_molscribe_model()
        logger.info("Model initialized, running prediction...")
        result = model.predict_image_file(image_path)
        logger.info(f"Prediction completed: {result}")
        return result
    except Exception as e:
        logger.error(f"MolScribe prediction failed: {e}")
        import traceback
        logger.error(f"Traceback: {traceback.format_exc()}")
        return {"error": str(e), "traceback": traceback.format_exc()}


def decode_single_base64_image(base64_data: str, filename: Optional[str] = None, include_molscribe: bool = False) -> Tuple[Optional[Image.Image], str, dict]:
    """Decode a single Base64 image (with optional MolScribe conversion)
    
    Args:
        base64_data: Base64 encoded image data
        filename: Output filename (optional)
        include_molscribe: Whether to run MolScribe MOL conversion
        
    Returns:
        Tuple[PIL.Image, filename, metadata]
    """
    
    try:
        # Clean up Base64 data
        base64_data = base64_data.strip()
        
        # Remove data URL prefix
        original_format = "unknown"
        if base64_data.startswith('data:image'):
            header_part = base64_data.split(',')[0]
            if 'image/' in header_part:
                format_part = header_part.split('image/')[1].split(';')[0]
                original_format = format_part.upper()
            base64_data = base64_data.split(',')[1]
        
        # Decode Base64
        image_data = base64.b64decode(base64_data)
        
        # Convert to PIL Image
        image = Image.open(BytesIO(image_data))
        
        # Generate filename
        if not filename:
            if original_format != "unknown":
                filename = f"decoded_image.{original_format.lower()}"
            else:
                filename = f"decoded_image.{image.format.lower() if image.format else 'png'}"
        
        # Collect metadata
        metadata = {
            "success": True,
            "filename": filename,
            "image_format": image.format or original_format,
            "image_mode": image.mode,
            "image_size": {
                "width": image.width,
                "height": image.height
            },
            "original_data_size": len(base64_data),
            "decoded_data_size": len(image_data)
        }
        
        # Run MolScribe conversion if requested
        if include_molscribe:
            try:
                # Preprocess image for MolScribe
                processed_image = image
                
                # Convert RGBA to RGB (handle transparency with white background)
                if processed_image.mode == 'RGBA':
                    background = Image.new('RGB', processed_image.size, (255, 255, 255))
                    background.paste(processed_image, mask=processed_image.split()[-1])
                    processed_image = background
                elif processed_image.mode != 'RGB':
                    processed_image = processed_image.convert('RGB')
                
                # Resize if too small (MolScribe recommended minimum)
                min_size = 224
                if processed_image.width < min_size or processed_image.height < min_size:
                    scale_factor = max(min_size / processed_image.width, min_size / processed_image.height)
                    new_width = int(processed_image.width * scale_factor)
                    new_height = int(processed_image.height * scale_factor)
                    processed_image = processed_image.resize((new_width, new_height), Image.Resampling.LANCZOS)
                    logger.info(f"Resized image from {image.width}x{image.height} to {new_width}x{new_height}")
                
                # Save to temporary file
                with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as temp_file:
                    processed_image.save(temp_file.name, 'PNG')
                    temp_image_path = temp_file.name
                
                try:
                    # Run MolScribe prediction
                    logger.info(f"Running MolScribe prediction for {filename}...")
                    result = run_molscribe_prediction(temp_image_path)
                    
                    if result and not isinstance(result, dict) or not result.get("error"):
                        metadata["molscribe"] = {
                            "success": True,
                            "smiles": result.get('smiles', ''),
                            "molfile": result.get('molfile', ''),
                            "confidence": result.get('confidence', 0.0)
                        }
                        logger.info(f"MolScribe prediction successful for {filename}")
                    elif result and result.get("error"):
                        metadata["molscribe"] = {
                            "success": False,
                            "error": result.get("error", "Unknown error"),
                            "details": result.get("traceback", "No traceback available")
                        }
                        logger.warning(f"MolScribe prediction failed for {filename}: {result.get('error')}")
                    else:
                        metadata["molscribe"] = {
                            "success": False,
                            "error": "MolScribe returned empty result",
                            "details": "The model may not have detected any chemical structures in the image"
                        }
                        logger.warning(f"MolScribe returned empty result for {filename}")
                
                finally:
                    # Clean up temporary file
                    if os.path.exists(temp_image_path):
                        os.remove(temp_image_path)
                        
            except Exception as e:
                metadata["molscribe"] = {
                    "success": False,
                    "error": f"Image preprocessing or MolScribe execution failed: {str(e)}",
                    "details": "This may happen if the image doesn't contain recognizable chemical structures or if there's a model initialization issue"
                }
                logger.error(f"MolScribe error for {filename}: {e}")
                import traceback
                logger.error(f"Full traceback: {traceback.format_exc()}")
        
        return image, filename, metadata
        
    except Exception as e:
        error_metadata = {
            "success": False,
            "error": str(e),
            "filename": filename or "error.png"
        }
        if include_molscribe:
            error_metadata["molscribe"] = {
                "success": False,
                "error": "Image decoding failed, MolScribe not executed"
            }
        return None, filename or "error.png", error_metadata


def decode_base64_to_images(input_data: str, include_molscribe: bool = False) -> str:
    """Convert Base64 data to downloadable images (with optional MolScribe conversion)
    
    Args:
        input_data: Base64 image data or JSON string containing Base64 images
        include_molscribe: Whether to include MolScribe MOL conversion
        
    Returns:
        JSON string containing conversion results and download information
    """
    
    try:
        if not input_data or not input_data.strip():
            return json.dumps({
                "error": "No input data provided",
                "total_processed": 0,
                "successful_conversions": 0,
                "results": []
            }, indent=2, ensure_ascii=False)
        
        results = []
        temp_files = []
        
        # Determine input data format
        input_data = input_data.strip()
        
        if input_data.startswith('{') or input_data.startswith('['):
            # JSON format
            try:
                json_data = json.loads(input_data)
                
                if isinstance(json_data, dict):
                    # Single image data
                    if "image_base64" in json_data:
                        image, filename, metadata = decode_single_base64_image(
                            json_data["image_base64"],
                            json_data.get("filename"),
                            include_molscribe
                        )
                        if image:
                            temp_files.append((image, filename))
                        results.append(metadata)
                    
                    # Multi-page data (DECIMER output format)
                    elif "pages" in json_data:
                        for page in json_data["pages"]:
                            for structure in page.get("structures", []):
                                filename = f"page_{page['page_number']}_structure_{structure['segment_id']}.png"
                                image, filename, metadata = decode_single_base64_image(
                                    structure["image_base64"],
                                    filename,
                                    include_molscribe
                                )
                                if image:
                                    temp_files.append((image, filename))
                                results.append(metadata)
                    
                    else:
                        return json.dumps({
                            "error": "Invalid JSON format. Expected 'image_base64' or 'pages' field",
                            "total_processed": 0,
                            "successful_conversions": 0,
                            "results": []
                        }, indent=2, ensure_ascii=False)
                
                elif isinstance(json_data, list):
                    # List format
                    for i, item in enumerate(json_data):
                        if isinstance(item, dict) and "image_base64" in item:
                            filename = item.get("filename", f"image_{i+1}.png")
                            image, filename, metadata = decode_single_base64_image(
                                item["image_base64"], 
                                filename,
                                include_molscribe
                            )
                            if image:
                                temp_files.append((image, filename))
                            results.append(metadata)
                
            except json.JSONDecodeError as e:
                return json.dumps({
                    "error": f"Invalid JSON format: {e}",
                    "total_processed": 0,
                    "successful_conversions": 0,
                    "results": []
                }, indent=2, ensure_ascii=False)
        
        else:
            # Plain Base64 string
            image, filename, metadata = decode_single_base64_image(input_data, "decoded_image.png", include_molscribe)
            if image:
                temp_files.append((image, filename))
            results.append(metadata)
        
        # Calculate successful conversions
        successful_conversions = sum(1 for r in results if r.get("success", False))
        molscribe_conversions = sum(1 for r in results if r.get("molscribe", {}).get("success", False))
        
        # Compile results
        final_result = {
            "total_processed": len(results),
            "successful_conversions": successful_conversions,
            "failed_conversions": len(results) - successful_conversions,
            "molscribe_enabled": include_molscribe,
            "molscribe_conversions": molscribe_conversions if include_molscribe else None,
            "download_info": {
                "total_files": len(temp_files),
                "files_available": successful_conversions > 0
            },
            "results": results
        }
        
        logger.info(f"Conversion completed: {successful_conversions}/{len(results)} successful")
        
        return json.dumps(final_result, indent=2, ensure_ascii=False)
        
    except Exception as e:
        logger.error(f"Error in conversion process: {e}")
        error_result = {
            "error": str(e),
            "total_processed": 0,
            "successful_conversions": 0,
            "failed_conversions": 1,
            "molscribe_enabled": include_molscribe,
            "molscribe_conversions": 0 if include_molscribe else None,
            "download_info": {
                "total_files": 0,
                "files_available": False
            },
            "results": []
        }
        return json.dumps(error_result, indent=2, ensure_ascii=False)


def create_zip_from_base64(input_data: str, include_molscribe: bool = False) -> Optional[str]:
    """Extract images from Base64 data and create ZIP file (including results JSON)"""
    
    try:
        if not input_data or not input_data.strip():
            logger.warning("Empty input data")
            return None
        
        images_to_zip = []
        input_data = input_data.strip()
        
        # Parse input data
        if input_data.startswith('{') or input_data.startswith('['):
            try:
                json_data = json.loads(input_data)
                
                if isinstance(json_data, dict):
                    if "image_base64" in json_data:
                        image, filename, metadata = decode_single_base64_image(
                            json_data["image_base64"],
                            json_data.get("filename"),
                            include_molscribe
                        )
                        if image:
                            images_to_zip.append((image, filename, metadata))
                    
                    elif "pages" in json_data:
                        for page in json_data["pages"]:
                            for structure in page.get("structures", []):
                                filename = f"page_{page['page_number']}_structure_{structure['segment_id']}.png"
                                image, filename, metadata = decode_single_base64_image(
                                    structure["image_base64"],
                                    filename,
                                    include_molscribe
                                )
                                if image:
                                    images_to_zip.append((image, filename, metadata))
                
                elif isinstance(json_data, list):
                    for i, item in enumerate(json_data):
                        if isinstance(item, dict) and "image_base64" in item:
                            filename = item.get("filename", f"image_{i+1}.png")
                            image, filename, metadata = decode_single_base64_image(
                                item["image_base64"], 
                                filename,
                                include_molscribe
                            )
                            if image:
                                images_to_zip.append((image, filename, metadata))
            
            except json.JSONDecodeError as e:
                logger.error(f"JSON decode error: {e}")
                return None
        
        else:
            # Plain Base64 string
            image, filename, metadata = decode_single_base64_image(input_data, "decoded_image.png", include_molscribe)
            if image:
                images_to_zip.append((image, filename, metadata))
        
        # Create ZIP file
        if not images_to_zip:
            logger.warning("No images to zip")
            return None
        
        logger.info(f"Creating ZIP with {len(images_to_zip)} images")
        
        # Create temporary ZIP file
        temp_zip = tempfile.NamedTemporaryFile(suffix='.zip', delete=False)
        temp_zip_path = temp_zip.name
        temp_zip.close()
        
        # Prepare results JSON
        results_data = []
        for image, filename, metadata in images_to_zip:
            results_data.append(metadata)
        
        results_json = {
            "total_processed": len(images_to_zip),
            "successful_conversions": len([r for r in results_data if r.get("success", False)]),
            "molscribe_enabled": include_molscribe,
            "molscribe_conversions": len([r for r in results_data if r.get("molscribe", {}).get("success", False)]) if include_molscribe else 0,
            "results": results_data
        }
        
        with zipfile.ZipFile(temp_zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
            # Add results JSON
            json_str = json.dumps(results_json, indent=2, ensure_ascii=False)
            zipf.writestr('conversion_results.json', json_str)
            
            for image, filename, metadata in images_to_zip:
                # Save image to byte stream and add to ZIP
                img_byte_arr = BytesIO()
                image.save(img_byte_arr, format='PNG')
                img_byte_arr.seek(0)
                zipf.writestr(filename, img_byte_arr.read())
                
                # Add MOL file if MolScribe data exists
                if include_molscribe and metadata.get("molscribe", {}).get("success", False):
                    mol_filename = filename.rsplit('.', 1)[0] + '.mol'
                    molfile_content = metadata["molscribe"]["molfile"]
                    
                    # Add metadata to MOL file
                    enhanced_molfile = f"""{molfile_content}
> <SMILES>
{metadata["molscribe"]["smiles"]}

> <CONFIDENCE>
{metadata["molscribe"]["confidence"]:.4f}

> <SOURCE_IMAGE>
{filename}

> <GENERATED_BY>
MolScribe via Base64 Decoder

$$$$"""
                    
                    zipf.writestr(mol_filename, enhanced_molfile)
        
        if os.path.exists(temp_zip_path):
            logger.info(f"ZIP file created: {temp_zip_path}")
            return temp_zip_path
        else:
            logger.error("ZIP file was not created")
            return None
        
    except Exception as e:
        logger.error(f"Error creating ZIP file: {e}")
        import traceback
        logger.error(traceback.format_exc())
        return None


def create_demo():
    """Create Gradio interface for Base64 decoder"""
    
    with gr.Blocks(
        title="Base64 to Image Decoder",
        theme=gr.themes.Soft()
    ) as demo:
        
        gr.Markdown("""
        # ChemGrasp-OCSR (Base64 to Image Decoder and Optical Chemical Structure Recognition)
        
        Decode Base64-encoded image data and convert to image files.
        Optionally generate MOL files using MolScribe.
        
        πŸ’» **CPU Environment**
        
        ## πŸš€ Quick Start
        1. Paste your Base64 image data or JSON in the input field
        2. (Optional) Check "Include MolScribe MOL conversion" for chemical structures
        3. Click "Decode Images" to see results, or "Download as ZIP" to get files
        
        ## πŸ“‹ Input Formats
        - Single Base64 image data
        - JSON format (multiple images supported)
        - DECIMER output format (structure images)
        
        ## πŸ“š Citation
        If you use MolScribe in your research, please cite:
        ```
        @article{MolScribe,
            title = {{MolScribe}: Robust Molecular Structure Recognition with Image-to-Graph Generation},
            author = {Yujie Qian and Jiang Guo and Zhengkai Tu and Zhening Li and Connor W. Coley and Regina Barzilay},
            journal = {Journal of Chemical Information and Modeling},
            publisher = {American Chemical Society ({ACS})},
            doi = {10.1021/acs.jcim.2c01480},
            year = 2023,
        }
        ```
        """)
        
        with gr.Row():
            with gr.Column():
                input_data = gr.Textbox(
                    label="πŸ“₯ Base64 Image Data or JSON",
                    lines=10,
                    placeholder="Enter Base64 image data or JSON format data...",
                    show_copy_button=True
                )
                
                molscribe_checkbox = gr.Checkbox(
                    label="🧬 Include MolScribe MOL conversion",
                    value=False,
                    info="For chemical structures, also generate MOL files"
                )
                
                with gr.Row():
                    decode_btn = gr.Button(
                        "πŸ–ΌοΈ Decode Images",
                        variant="primary",
                        size="lg"
                    )
                    
                    download_btn = gr.Button(
                        "πŸ“¦ Download as ZIP",
                        variant="secondary",
                        size="lg"
                    )
            
            with gr.Column():
                result_output = gr.Textbox(
                    label="πŸ“Š Conversion Results",
                    lines=15,
                    show_copy_button=True,
                    placeholder="Conversion results will appear here...",
                    interactive=False
                )
                
                zip_download = gr.File(
                    label="πŸ“¦ Download ZIP File"
                )
        
        with gr.Accordion("πŸ“– Input Format Examples", open=False):
            gr.Markdown("""
            ### Single Base64 Image
            ```
            iVBORw0KGgoAAAANSUhEUgAA...
            ```
            
            ### Data URL Format
            ```
            ...
            ```
            
            ### JSON Format (Single Image)
            ```json
            {
              "image_base64": "iVBORw0KGgoAAAANSUhEUgAA...",
              "filename": "structure.png"
            }
            ```
            
            ### DECIMER Output Format
            ```json
            {
              "pages": [
                {
                  "page_number": 1,
                  "structures": [
                    {
                      "segment_id": 1,
                      "image_base64": "iVBORw0KGgoAAAANSUhEUgAA..."
                    }
                  ]
                }
              ]
            }
            ```
            """)
        
        with gr.Accordion("πŸ“– Output Format Example", open=False):
            gr.Markdown("""
            ### JSON Conversion Results (Display & Inside ZIP)
            """)
            gr.Code("""
{
  "total_processed": 2,
  "successful_conversions": 2,
  "failed_conversions": 0,
  "molscribe_enabled": true,
  "molscribe_conversions": 2,
  "download_info": {
    "total_files": 2,
    "files_available": true
  },
  "results": [
    {
      "success": true,
      "filename": "decoded_image.png",
      "image_format": "PNG",
      "image_mode": "RGB",
      "image_size": {
        "width": 256,
        "height": 256
      },
      "original_data_size": 12345,
      "decoded_data_size": 8192,
      "molscribe": {
        "success": true,
        "smiles": "c1ccccc1",
        "molfile": "\\n  Mrv2014 01011200\\n\\n  6  6  0  0  0  0...",
        "confidence": 0.9876
      }
    }
  ]
}
            """, language="json")
            
            gr.Markdown("""
            ### ZIP File Structure Example
            ```
            chemical_structures.zip
            β”œβ”€β”€ conversion_results.json  ← JSON data above
            β”œβ”€β”€ page_1_structure_1.png   ← Decoded image
            β”œβ”€β”€ page_1_structure_1.mol   ← MOL generated by MolScribe
            β”œβ”€β”€ page_1_structure_2.png
            β”œβ”€β”€ page_1_structure_2.mol
            └── ...
            ```
            """)
        
        # Event handlers
        def decode_and_show_results(input_data, include_molscribe):
            return decode_base64_to_images(input_data, include_molscribe)
        
        def create_and_show_zip(input_data, include_molscribe):
            """Create ZIP file with error handling"""
            try:
                if not input_data or not input_data.strip():
                    logger.warning("No input data provided for ZIP creation")
                    return None
                
                logger.info(f"Creating ZIP file... (MolScribe: {include_molscribe})")
                zip_path = create_zip_from_base64(input_data, include_molscribe)
                
                if zip_path and os.path.exists(zip_path):
                    file_size = os.path.getsize(zip_path)
                    logger.info(f"ZIP file created successfully: {zip_path} ({file_size} bytes)")
                    return zip_path
                else:
                    logger.error("ZIP file creation failed or file not found")
                    return None
                    
            except Exception as e:
                logger.error(f"Error in create_and_show_zip: {e}")
                import traceback
                logger.error(traceback.format_exc())
                return None
        
        decode_btn.click(
            fn=decode_and_show_results,
            inputs=[input_data, molscribe_checkbox],
            outputs=[result_output],
            show_progress=True
        )
        
        download_btn.click(
            fn=create_and_show_zip,
            inputs=[input_data, molscribe_checkbox],
            outputs=[zip_download],
            show_progress=True
        )
    
    return demo


# Main execution
if __name__ == "__main__":
    logger.info("Running in CPU environment")
    
    demo = create_demo()
    demo.launch(mcp_server=False)