Spaces:
Running
Running
File size: 27,971 Bytes
27f35e6 619db5d 27f35e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 |
"""
Base64 to Image Decoder
Decodes Base64 data to image files and optionally converts to MOL format using MolScribe
"""
import gradio as gr
import base64
import json
import tempfile
import os
import logging
from io import BytesIO
from typing import Optional, Tuple, List
import zipfile
# Import required libraries
try:
from PIL import Image
import numpy as np
import torch
# MolScribe will be lazy loaded
except ImportError as e:
logging.error(f"Required library not found: {e}")
print("Please install required dependencies:")
print("pip install pillow")
print("pip install numpy")
print('pip install "gradio[mcp]"')
print("pip install MolScribe")
print("pip install torch")
raise
# Logging setup
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global variable to cache MolScribe model
_molscribe_model = None
def initialize_molscribe_model():
"""Initialize MolScribe model (CPU)"""
global _molscribe_model
if _molscribe_model is not None:
return _molscribe_model
try:
import numpy as np
import torch
from molscribe import MolScribe
from huggingface_hub import hf_hub_download
logger.info("Downloading MolScribe checkpoint...")
ckpt_path = hf_hub_download('yujieq/MolScribe', 'swin_base_char_aux_1m.pth')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger.info(f"Initializing MolScribe on {device}...")
logger.info(f"NumPy version: {np.__version__}")
logger.info(f"PyTorch version: {torch.__version__}")
_molscribe_model = MolScribe(ckpt_path, device=device)
logger.info("MolScribe model ready")
return _molscribe_model
except Exception as e:
logger.error(f"Failed to initialize MolScribe: {e}")
raise
def run_molscribe_prediction(image_path: str):
"""Run MolScribe prediction"""
try:
import numpy as np
import torch
logger.info("Starting MolScribe prediction...")
logger.info(f"NumPy available: {np.__version__}")
logger.info(f"PyTorch available: {torch.__version__}")
model = initialize_molscribe_model()
logger.info("Model initialized, running prediction...")
result = model.predict_image_file(image_path)
logger.info(f"Prediction completed: {result}")
return result
except Exception as e:
logger.error(f"MolScribe prediction failed: {e}")
import traceback
logger.error(f"Traceback: {traceback.format_exc()}")
return {"error": str(e), "traceback": traceback.format_exc()}
def decode_single_base64_image(base64_data: str, filename: Optional[str] = None, include_molscribe: bool = False) -> Tuple[Optional[Image.Image], str, dict]:
"""Decode a single Base64 image (with optional MolScribe conversion)
Args:
base64_data: Base64 encoded image data
filename: Output filename (optional)
include_molscribe: Whether to run MolScribe MOL conversion
Returns:
Tuple[PIL.Image, filename, metadata]
"""
try:
# Clean up Base64 data
base64_data = base64_data.strip()
# Remove data URL prefix
original_format = "unknown"
if base64_data.startswith('data:image'):
header_part = base64_data.split(',')[0]
if 'image/' in header_part:
format_part = header_part.split('image/')[1].split(';')[0]
original_format = format_part.upper()
base64_data = base64_data.split(',')[1]
# Decode Base64
image_data = base64.b64decode(base64_data)
# Convert to PIL Image
image = Image.open(BytesIO(image_data))
# Generate filename
if not filename:
if original_format != "unknown":
filename = f"decoded_image.{original_format.lower()}"
else:
filename = f"decoded_image.{image.format.lower() if image.format else 'png'}"
# Collect metadata
metadata = {
"success": True,
"filename": filename,
"image_format": image.format or original_format,
"image_mode": image.mode,
"image_size": {
"width": image.width,
"height": image.height
},
"original_data_size": len(base64_data),
"decoded_data_size": len(image_data)
}
# Run MolScribe conversion if requested
if include_molscribe:
try:
# Preprocess image for MolScribe
processed_image = image
# Convert RGBA to RGB (handle transparency with white background)
if processed_image.mode == 'RGBA':
background = Image.new('RGB', processed_image.size, (255, 255, 255))
background.paste(processed_image, mask=processed_image.split()[-1])
processed_image = background
elif processed_image.mode != 'RGB':
processed_image = processed_image.convert('RGB')
# Resize if too small (MolScribe recommended minimum)
min_size = 224
if processed_image.width < min_size or processed_image.height < min_size:
scale_factor = max(min_size / processed_image.width, min_size / processed_image.height)
new_width = int(processed_image.width * scale_factor)
new_height = int(processed_image.height * scale_factor)
processed_image = processed_image.resize((new_width, new_height), Image.Resampling.LANCZOS)
logger.info(f"Resized image from {image.width}x{image.height} to {new_width}x{new_height}")
# Save to temporary file
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as temp_file:
processed_image.save(temp_file.name, 'PNG')
temp_image_path = temp_file.name
try:
# Run MolScribe prediction
logger.info(f"Running MolScribe prediction for {filename}...")
result = run_molscribe_prediction(temp_image_path)
if result and not isinstance(result, dict) or not result.get("error"):
metadata["molscribe"] = {
"success": True,
"smiles": result.get('smiles', ''),
"molfile": result.get('molfile', ''),
"confidence": result.get('confidence', 0.0)
}
logger.info(f"MolScribe prediction successful for {filename}")
elif result and result.get("error"):
metadata["molscribe"] = {
"success": False,
"error": result.get("error", "Unknown error"),
"details": result.get("traceback", "No traceback available")
}
logger.warning(f"MolScribe prediction failed for {filename}: {result.get('error')}")
else:
metadata["molscribe"] = {
"success": False,
"error": "MolScribe returned empty result",
"details": "The model may not have detected any chemical structures in the image"
}
logger.warning(f"MolScribe returned empty result for {filename}")
finally:
# Clean up temporary file
if os.path.exists(temp_image_path):
os.remove(temp_image_path)
except Exception as e:
metadata["molscribe"] = {
"success": False,
"error": f"Image preprocessing or MolScribe execution failed: {str(e)}",
"details": "This may happen if the image doesn't contain recognizable chemical structures or if there's a model initialization issue"
}
logger.error(f"MolScribe error for {filename}: {e}")
import traceback
logger.error(f"Full traceback: {traceback.format_exc()}")
return image, filename, metadata
except Exception as e:
error_metadata = {
"success": False,
"error": str(e),
"filename": filename or "error.png"
}
if include_molscribe:
error_metadata["molscribe"] = {
"success": False,
"error": "Image decoding failed, MolScribe not executed"
}
return None, filename or "error.png", error_metadata
def decode_base64_to_images(input_data: str, include_molscribe: bool = False) -> str:
"""Convert Base64 data to downloadable images (with optional MolScribe conversion)
Args:
input_data: Base64 image data or JSON string containing Base64 images
include_molscribe: Whether to include MolScribe MOL conversion
Returns:
JSON string containing conversion results and download information
"""
try:
if not input_data or not input_data.strip():
return json.dumps({
"error": "No input data provided",
"total_processed": 0,
"successful_conversions": 0,
"results": []
}, indent=2, ensure_ascii=False)
results = []
temp_files = []
# Determine input data format
input_data = input_data.strip()
if input_data.startswith('{') or input_data.startswith('['):
# JSON format
try:
json_data = json.loads(input_data)
if isinstance(json_data, dict):
# Single image data
if "image_base64" in json_data:
image, filename, metadata = decode_single_base64_image(
json_data["image_base64"],
json_data.get("filename"),
include_molscribe
)
if image:
temp_files.append((image, filename))
results.append(metadata)
# Multi-page data (DECIMER output format)
elif "pages" in json_data:
for page in json_data["pages"]:
for structure in page.get("structures", []):
filename = f"page_{page['page_number']}_structure_{structure['segment_id']}.png"
image, filename, metadata = decode_single_base64_image(
structure["image_base64"],
filename,
include_molscribe
)
if image:
temp_files.append((image, filename))
results.append(metadata)
else:
return json.dumps({
"error": "Invalid JSON format. Expected 'image_base64' or 'pages' field",
"total_processed": 0,
"successful_conversions": 0,
"results": []
}, indent=2, ensure_ascii=False)
elif isinstance(json_data, list):
# List format
for i, item in enumerate(json_data):
if isinstance(item, dict) and "image_base64" in item:
filename = item.get("filename", f"image_{i+1}.png")
image, filename, metadata = decode_single_base64_image(
item["image_base64"],
filename,
include_molscribe
)
if image:
temp_files.append((image, filename))
results.append(metadata)
except json.JSONDecodeError as e:
return json.dumps({
"error": f"Invalid JSON format: {e}",
"total_processed": 0,
"successful_conversions": 0,
"results": []
}, indent=2, ensure_ascii=False)
else:
# Plain Base64 string
image, filename, metadata = decode_single_base64_image(input_data, "decoded_image.png", include_molscribe)
if image:
temp_files.append((image, filename))
results.append(metadata)
# Calculate successful conversions
successful_conversions = sum(1 for r in results if r.get("success", False))
molscribe_conversions = sum(1 for r in results if r.get("molscribe", {}).get("success", False))
# Compile results
final_result = {
"total_processed": len(results),
"successful_conversions": successful_conversions,
"failed_conversions": len(results) - successful_conversions,
"molscribe_enabled": include_molscribe,
"molscribe_conversions": molscribe_conversions if include_molscribe else None,
"download_info": {
"total_files": len(temp_files),
"files_available": successful_conversions > 0
},
"results": results
}
logger.info(f"Conversion completed: {successful_conversions}/{len(results)} successful")
return json.dumps(final_result, indent=2, ensure_ascii=False)
except Exception as e:
logger.error(f"Error in conversion process: {e}")
error_result = {
"error": str(e),
"total_processed": 0,
"successful_conversions": 0,
"failed_conversions": 1,
"molscribe_enabled": include_molscribe,
"molscribe_conversions": 0 if include_molscribe else None,
"download_info": {
"total_files": 0,
"files_available": False
},
"results": []
}
return json.dumps(error_result, indent=2, ensure_ascii=False)
def create_zip_from_base64(input_data: str, include_molscribe: bool = False) -> Optional[str]:
"""Extract images from Base64 data and create ZIP file (including results JSON)"""
try:
if not input_data or not input_data.strip():
logger.warning("Empty input data")
return None
images_to_zip = []
input_data = input_data.strip()
# Parse input data
if input_data.startswith('{') or input_data.startswith('['):
try:
json_data = json.loads(input_data)
if isinstance(json_data, dict):
if "image_base64" in json_data:
image, filename, metadata = decode_single_base64_image(
json_data["image_base64"],
json_data.get("filename"),
include_molscribe
)
if image:
images_to_zip.append((image, filename, metadata))
elif "pages" in json_data:
for page in json_data["pages"]:
for structure in page.get("structures", []):
filename = f"page_{page['page_number']}_structure_{structure['segment_id']}.png"
image, filename, metadata = decode_single_base64_image(
structure["image_base64"],
filename,
include_molscribe
)
if image:
images_to_zip.append((image, filename, metadata))
elif isinstance(json_data, list):
for i, item in enumerate(json_data):
if isinstance(item, dict) and "image_base64" in item:
filename = item.get("filename", f"image_{i+1}.png")
image, filename, metadata = decode_single_base64_image(
item["image_base64"],
filename,
include_molscribe
)
if image:
images_to_zip.append((image, filename, metadata))
except json.JSONDecodeError as e:
logger.error(f"JSON decode error: {e}")
return None
else:
# Plain Base64 string
image, filename, metadata = decode_single_base64_image(input_data, "decoded_image.png", include_molscribe)
if image:
images_to_zip.append((image, filename, metadata))
# Create ZIP file
if not images_to_zip:
logger.warning("No images to zip")
return None
logger.info(f"Creating ZIP with {len(images_to_zip)} images")
# Create temporary ZIP file
temp_zip = tempfile.NamedTemporaryFile(suffix='.zip', delete=False)
temp_zip_path = temp_zip.name
temp_zip.close()
# Prepare results JSON
results_data = []
for image, filename, metadata in images_to_zip:
results_data.append(metadata)
results_json = {
"total_processed": len(images_to_zip),
"successful_conversions": len([r for r in results_data if r.get("success", False)]),
"molscribe_enabled": include_molscribe,
"molscribe_conversions": len([r for r in results_data if r.get("molscribe", {}).get("success", False)]) if include_molscribe else 0,
"results": results_data
}
with zipfile.ZipFile(temp_zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
# Add results JSON
json_str = json.dumps(results_json, indent=2, ensure_ascii=False)
zipf.writestr('conversion_results.json', json_str)
for image, filename, metadata in images_to_zip:
# Save image to byte stream and add to ZIP
img_byte_arr = BytesIO()
image.save(img_byte_arr, format='PNG')
img_byte_arr.seek(0)
zipf.writestr(filename, img_byte_arr.read())
# Add MOL file if MolScribe data exists
if include_molscribe and metadata.get("molscribe", {}).get("success", False):
mol_filename = filename.rsplit('.', 1)[0] + '.mol'
molfile_content = metadata["molscribe"]["molfile"]
# Add metadata to MOL file
enhanced_molfile = f"""{molfile_content}
> <SMILES>
{metadata["molscribe"]["smiles"]}
> <CONFIDENCE>
{metadata["molscribe"]["confidence"]:.4f}
> <SOURCE_IMAGE>
{filename}
> <GENERATED_BY>
MolScribe via Base64 Decoder
$$$$"""
zipf.writestr(mol_filename, enhanced_molfile)
if os.path.exists(temp_zip_path):
logger.info(f"ZIP file created: {temp_zip_path}")
return temp_zip_path
else:
logger.error("ZIP file was not created")
return None
except Exception as e:
logger.error(f"Error creating ZIP file: {e}")
import traceback
logger.error(traceback.format_exc())
return None
def create_demo():
"""Create Gradio interface for Base64 decoder"""
with gr.Blocks(
title="Base64 to Image Decoder",
theme=gr.themes.Soft()
) as demo:
gr.Markdown("""
# ChemGrasp-OCSR (Base64 to Image Decoder and Optical Chemical Structure Recognition)
Decode Base64-encoded image data and convert to image files.
Optionally generate MOL files using MolScribe.
π» **CPU Environment**
## π Quick Start
1. Paste your Base64 image data or JSON in the input field
2. (Optional) Check "Include MolScribe MOL conversion" for chemical structures
3. Click "Decode Images" to see results, or "Download as ZIP" to get files
## π Input Formats
- Single Base64 image data
- JSON format (multiple images supported)
- DECIMER output format (structure images)
## π Citation
If you use MolScribe in your research, please cite:
```
@article{MolScribe,
title = {{MolScribe}: Robust Molecular Structure Recognition with Image-to-Graph Generation},
author = {Yujie Qian and Jiang Guo and Zhengkai Tu and Zhening Li and Connor W. Coley and Regina Barzilay},
journal = {Journal of Chemical Information and Modeling},
publisher = {American Chemical Society ({ACS})},
doi = {10.1021/acs.jcim.2c01480},
year = 2023,
}
```
""")
with gr.Row():
with gr.Column():
input_data = gr.Textbox(
label="π₯ Base64 Image Data or JSON",
lines=10,
placeholder="Enter Base64 image data or JSON format data...",
show_copy_button=True
)
molscribe_checkbox = gr.Checkbox(
label="𧬠Include MolScribe MOL conversion",
value=False,
info="For chemical structures, also generate MOL files"
)
with gr.Row():
decode_btn = gr.Button(
"πΌοΈ Decode Images",
variant="primary",
size="lg"
)
download_btn = gr.Button(
"π¦ Download as ZIP",
variant="secondary",
size="lg"
)
with gr.Column():
result_output = gr.Textbox(
label="π Conversion Results",
lines=15,
show_copy_button=True,
placeholder="Conversion results will appear here...",
interactive=False
)
zip_download = gr.File(
label="π¦ Download ZIP File"
)
with gr.Accordion("π Input Format Examples", open=False):
gr.Markdown("""
### Single Base64 Image
```
iVBORw0KGgoAAAANSUhEUgAA...
```
### Data URL Format
```
...
```
### JSON Format (Single Image)
```json
{
"image_base64": "iVBORw0KGgoAAAANSUhEUgAA...",
"filename": "structure.png"
}
```
### DECIMER Output Format
```json
{
"pages": [
{
"page_number": 1,
"structures": [
{
"segment_id": 1,
"image_base64": "iVBORw0KGgoAAAANSUhEUgAA..."
}
]
}
]
}
```
""")
with gr.Accordion("π Output Format Example", open=False):
gr.Markdown("""
### JSON Conversion Results (Display & Inside ZIP)
""")
gr.Code("""
{
"total_processed": 2,
"successful_conversions": 2,
"failed_conversions": 0,
"molscribe_enabled": true,
"molscribe_conversions": 2,
"download_info": {
"total_files": 2,
"files_available": true
},
"results": [
{
"success": true,
"filename": "decoded_image.png",
"image_format": "PNG",
"image_mode": "RGB",
"image_size": {
"width": 256,
"height": 256
},
"original_data_size": 12345,
"decoded_data_size": 8192,
"molscribe": {
"success": true,
"smiles": "c1ccccc1",
"molfile": "\\n Mrv2014 01011200\\n\\n 6 6 0 0 0 0...",
"confidence": 0.9876
}
}
]
}
""", language="json")
gr.Markdown("""
### ZIP File Structure Example
```
chemical_structures.zip
βββ conversion_results.json β JSON data above
βββ page_1_structure_1.png β Decoded image
βββ page_1_structure_1.mol β MOL generated by MolScribe
βββ page_1_structure_2.png
βββ page_1_structure_2.mol
βββ ...
```
""")
# Event handlers
def decode_and_show_results(input_data, include_molscribe):
return decode_base64_to_images(input_data, include_molscribe)
def create_and_show_zip(input_data, include_molscribe):
"""Create ZIP file with error handling"""
try:
if not input_data or not input_data.strip():
logger.warning("No input data provided for ZIP creation")
return None
logger.info(f"Creating ZIP file... (MolScribe: {include_molscribe})")
zip_path = create_zip_from_base64(input_data, include_molscribe)
if zip_path and os.path.exists(zip_path):
file_size = os.path.getsize(zip_path)
logger.info(f"ZIP file created successfully: {zip_path} ({file_size} bytes)")
return zip_path
else:
logger.error("ZIP file creation failed or file not found")
return None
except Exception as e:
logger.error(f"Error in create_and_show_zip: {e}")
import traceback
logger.error(traceback.format_exc())
return None
decode_btn.click(
fn=decode_and_show_results,
inputs=[input_data, molscribe_checkbox],
outputs=[result_output],
show_progress=True
)
download_btn.click(
fn=create_and_show_zip,
inputs=[input_data, molscribe_checkbox],
outputs=[zip_download],
show_progress=True
)
return demo
# Main execution
if __name__ == "__main__":
logger.info("Running in CPU environment")
demo = create_demo()
demo.launch(mcp_server=False)
|