""" Base64 to Image Decoder Decodes Base64 data to image files and optionally converts to MOL format using MolScribe """ import gradio as gr import base64 import json import tempfile import os import logging from io import BytesIO from typing import Optional, Tuple, List import zipfile # Import required libraries try: from PIL import Image import numpy as np import torch # MolScribe will be lazy loaded except ImportError as e: logging.error(f"Required library not found: {e}") print("Please install required dependencies:") print("pip install pillow") print("pip install numpy") print('pip install "gradio[mcp]"') print("pip install MolScribe") print("pip install torch") raise # Logging setup logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Global variable to cache MolScribe model _molscribe_model = None def initialize_molscribe_model(): """Initialize MolScribe model (CPU)""" global _molscribe_model if _molscribe_model is not None: return _molscribe_model try: import numpy as np import torch from molscribe import MolScribe from huggingface_hub import hf_hub_download logger.info("Downloading MolScribe checkpoint...") ckpt_path = hf_hub_download('yujieq/MolScribe', 'swin_base_char_aux_1m.pth') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') logger.info(f"Initializing MolScribe on {device}...") logger.info(f"NumPy version: {np.__version__}") logger.info(f"PyTorch version: {torch.__version__}") _molscribe_model = MolScribe(ckpt_path, device=device) logger.info("MolScribe model ready") return _molscribe_model except Exception as e: logger.error(f"Failed to initialize MolScribe: {e}") raise def run_molscribe_prediction(image_path: str): """Run MolScribe prediction""" try: import numpy as np import torch logger.info("Starting MolScribe prediction...") logger.info(f"NumPy available: {np.__version__}") logger.info(f"PyTorch available: {torch.__version__}") model = initialize_molscribe_model() logger.info("Model initialized, running prediction...") result = model.predict_image_file(image_path) logger.info(f"Prediction completed: {result}") return result except Exception as e: logger.error(f"MolScribe prediction failed: {e}") import traceback logger.error(f"Traceback: {traceback.format_exc()}") return {"error": str(e), "traceback": traceback.format_exc()} def decode_single_base64_image(base64_data: str, filename: Optional[str] = None, include_molscribe: bool = False) -> Tuple[Optional[Image.Image], str, dict]: """Decode a single Base64 image (with optional MolScribe conversion) Args: base64_data: Base64 encoded image data filename: Output filename (optional) include_molscribe: Whether to run MolScribe MOL conversion Returns: Tuple[PIL.Image, filename, metadata] """ try: # Clean up Base64 data base64_data = base64_data.strip() # Remove data URL prefix original_format = "unknown" if base64_data.startswith('data:image'): header_part = base64_data.split(',')[0] if 'image/' in header_part: format_part = header_part.split('image/')[1].split(';')[0] original_format = format_part.upper() base64_data = base64_data.split(',')[1] # Decode Base64 image_data = base64.b64decode(base64_data) # Convert to PIL Image image = Image.open(BytesIO(image_data)) # Generate filename if not filename: if original_format != "unknown": filename = f"decoded_image.{original_format.lower()}" else: filename = f"decoded_image.{image.format.lower() if image.format else 'png'}" # Collect metadata metadata = { "success": True, "filename": filename, "image_format": image.format or original_format, "image_mode": image.mode, "image_size": { "width": image.width, "height": image.height }, "original_data_size": len(base64_data), "decoded_data_size": len(image_data) } # Run MolScribe conversion if requested if include_molscribe: try: # Preprocess image for MolScribe processed_image = image # Convert RGBA to RGB (handle transparency with white background) if processed_image.mode == 'RGBA': background = Image.new('RGB', processed_image.size, (255, 255, 255)) background.paste(processed_image, mask=processed_image.split()[-1]) processed_image = background elif processed_image.mode != 'RGB': processed_image = processed_image.convert('RGB') # Resize if too small (MolScribe recommended minimum) min_size = 224 if processed_image.width < min_size or processed_image.height < min_size: scale_factor = max(min_size / processed_image.width, min_size / processed_image.height) new_width = int(processed_image.width * scale_factor) new_height = int(processed_image.height * scale_factor) processed_image = processed_image.resize((new_width, new_height), Image.Resampling.LANCZOS) logger.info(f"Resized image from {image.width}x{image.height} to {new_width}x{new_height}") # Save to temporary file with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as temp_file: processed_image.save(temp_file.name, 'PNG') temp_image_path = temp_file.name try: # Run MolScribe prediction logger.info(f"Running MolScribe prediction for {filename}...") result = run_molscribe_prediction(temp_image_path) if result and not isinstance(result, dict) or not result.get("error"): metadata["molscribe"] = { "success": True, "smiles": result.get('smiles', ''), "molfile": result.get('molfile', ''), "confidence": result.get('confidence', 0.0) } logger.info(f"MolScribe prediction successful for {filename}") elif result and result.get("error"): metadata["molscribe"] = { "success": False, "error": result.get("error", "Unknown error"), "details": result.get("traceback", "No traceback available") } logger.warning(f"MolScribe prediction failed for {filename}: {result.get('error')}") else: metadata["molscribe"] = { "success": False, "error": "MolScribe returned empty result", "details": "The model may not have detected any chemical structures in the image" } logger.warning(f"MolScribe returned empty result for {filename}") finally: # Clean up temporary file if os.path.exists(temp_image_path): os.remove(temp_image_path) except Exception as e: metadata["molscribe"] = { "success": False, "error": f"Image preprocessing or MolScribe execution failed: {str(e)}", "details": "This may happen if the image doesn't contain recognizable chemical structures or if there's a model initialization issue" } logger.error(f"MolScribe error for {filename}: {e}") import traceback logger.error(f"Full traceback: {traceback.format_exc()}") return image, filename, metadata except Exception as e: error_metadata = { "success": False, "error": str(e), "filename": filename or "error.png" } if include_molscribe: error_metadata["molscribe"] = { "success": False, "error": "Image decoding failed, MolScribe not executed" } return None, filename or "error.png", error_metadata def decode_base64_to_images(input_data: str, include_molscribe: bool = False) -> str: """Convert Base64 data to downloadable images (with optional MolScribe conversion) Args: input_data: Base64 image data or JSON string containing Base64 images include_molscribe: Whether to include MolScribe MOL conversion Returns: JSON string containing conversion results and download information """ try: if not input_data or not input_data.strip(): return json.dumps({ "error": "No input data provided", "total_processed": 0, "successful_conversions": 0, "results": [] }, indent=2, ensure_ascii=False) results = [] temp_files = [] # Determine input data format input_data = input_data.strip() if input_data.startswith('{') or input_data.startswith('['): # JSON format try: json_data = json.loads(input_data) if isinstance(json_data, dict): # Single image data if "image_base64" in json_data: image, filename, metadata = decode_single_base64_image( json_data["image_base64"], json_data.get("filename"), include_molscribe ) if image: temp_files.append((image, filename)) results.append(metadata) # Multi-page data (DECIMER output format) elif "pages" in json_data: for page in json_data["pages"]: for structure in page.get("structures", []): filename = f"page_{page['page_number']}_structure_{structure['segment_id']}.png" image, filename, metadata = decode_single_base64_image( structure["image_base64"], filename, include_molscribe ) if image: temp_files.append((image, filename)) results.append(metadata) else: return json.dumps({ "error": "Invalid JSON format. Expected 'image_base64' or 'pages' field", "total_processed": 0, "successful_conversions": 0, "results": [] }, indent=2, ensure_ascii=False) elif isinstance(json_data, list): # List format for i, item in enumerate(json_data): if isinstance(item, dict) and "image_base64" in item: filename = item.get("filename", f"image_{i+1}.png") image, filename, metadata = decode_single_base64_image( item["image_base64"], filename, include_molscribe ) if image: temp_files.append((image, filename)) results.append(metadata) except json.JSONDecodeError as e: return json.dumps({ "error": f"Invalid JSON format: {e}", "total_processed": 0, "successful_conversions": 0, "results": [] }, indent=2, ensure_ascii=False) else: # Plain Base64 string image, filename, metadata = decode_single_base64_image(input_data, "decoded_image.png", include_molscribe) if image: temp_files.append((image, filename)) results.append(metadata) # Calculate successful conversions successful_conversions = sum(1 for r in results if r.get("success", False)) molscribe_conversions = sum(1 for r in results if r.get("molscribe", {}).get("success", False)) # Compile results final_result = { "total_processed": len(results), "successful_conversions": successful_conversions, "failed_conversions": len(results) - successful_conversions, "molscribe_enabled": include_molscribe, "molscribe_conversions": molscribe_conversions if include_molscribe else None, "download_info": { "total_files": len(temp_files), "files_available": successful_conversions > 0 }, "results": results } logger.info(f"Conversion completed: {successful_conversions}/{len(results)} successful") return json.dumps(final_result, indent=2, ensure_ascii=False) except Exception as e: logger.error(f"Error in conversion process: {e}") error_result = { "error": str(e), "total_processed": 0, "successful_conversions": 0, "failed_conversions": 1, "molscribe_enabled": include_molscribe, "molscribe_conversions": 0 if include_molscribe else None, "download_info": { "total_files": 0, "files_available": False }, "results": [] } return json.dumps(error_result, indent=2, ensure_ascii=False) def create_zip_from_base64(input_data: str, include_molscribe: bool = False) -> Optional[str]: """Extract images from Base64 data and create ZIP file (including results JSON)""" try: if not input_data or not input_data.strip(): logger.warning("Empty input data") return None images_to_zip = [] input_data = input_data.strip() # Parse input data if input_data.startswith('{') or input_data.startswith('['): try: json_data = json.loads(input_data) if isinstance(json_data, dict): if "image_base64" in json_data: image, filename, metadata = decode_single_base64_image( json_data["image_base64"], json_data.get("filename"), include_molscribe ) if image: images_to_zip.append((image, filename, metadata)) elif "pages" in json_data: for page in json_data["pages"]: for structure in page.get("structures", []): filename = f"page_{page['page_number']}_structure_{structure['segment_id']}.png" image, filename, metadata = decode_single_base64_image( structure["image_base64"], filename, include_molscribe ) if image: images_to_zip.append((image, filename, metadata)) elif isinstance(json_data, list): for i, item in enumerate(json_data): if isinstance(item, dict) and "image_base64" in item: filename = item.get("filename", f"image_{i+1}.png") image, filename, metadata = decode_single_base64_image( item["image_base64"], filename, include_molscribe ) if image: images_to_zip.append((image, filename, metadata)) except json.JSONDecodeError as e: logger.error(f"JSON decode error: {e}") return None else: # Plain Base64 string image, filename, metadata = decode_single_base64_image(input_data, "decoded_image.png", include_molscribe) if image: images_to_zip.append((image, filename, metadata)) # Create ZIP file if not images_to_zip: logger.warning("No images to zip") return None logger.info(f"Creating ZIP with {len(images_to_zip)} images") # Create temporary ZIP file temp_zip = tempfile.NamedTemporaryFile(suffix='.zip', delete=False) temp_zip_path = temp_zip.name temp_zip.close() # Prepare results JSON results_data = [] for image, filename, metadata in images_to_zip: results_data.append(metadata) results_json = { "total_processed": len(images_to_zip), "successful_conversions": len([r for r in results_data if r.get("success", False)]), "molscribe_enabled": include_molscribe, "molscribe_conversions": len([r for r in results_data if r.get("molscribe", {}).get("success", False)]) if include_molscribe else 0, "results": results_data } with zipfile.ZipFile(temp_zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: # Add results JSON json_str = json.dumps(results_json, indent=2, ensure_ascii=False) zipf.writestr('conversion_results.json', json_str) for image, filename, metadata in images_to_zip: # Save image to byte stream and add to ZIP img_byte_arr = BytesIO() image.save(img_byte_arr, format='PNG') img_byte_arr.seek(0) zipf.writestr(filename, img_byte_arr.read()) # Add MOL file if MolScribe data exists if include_molscribe and metadata.get("molscribe", {}).get("success", False): mol_filename = filename.rsplit('.', 1)[0] + '.mol' molfile_content = metadata["molscribe"]["molfile"] # Add metadata to MOL file enhanced_molfile = f"""{molfile_content} > {metadata["molscribe"]["smiles"]} > {metadata["molscribe"]["confidence"]:.4f} > {filename} > MolScribe via Base64 Decoder $$$$""" zipf.writestr(mol_filename, enhanced_molfile) if os.path.exists(temp_zip_path): logger.info(f"ZIP file created: {temp_zip_path}") return temp_zip_path else: logger.error("ZIP file was not created") return None except Exception as e: logger.error(f"Error creating ZIP file: {e}") import traceback logger.error(traceback.format_exc()) return None def create_demo(): """Create Gradio interface for Base64 decoder""" with gr.Blocks( title="Base64 to Image Decoder", theme=gr.themes.Soft() ) as demo: gr.Markdown(""" # ChemGrasp-OCSR (Base64 to Image Decoder and Optical Chemical Structure Recognition) Decode Base64-encoded image data and convert to image files. Optionally generate MOL files using MolScribe. 💻 **CPU Environment** ## 🚀 Quick Start 1. Paste your Base64 image data or JSON in the input field 2. (Optional) Check "Include MolScribe MOL conversion" for chemical structures 3. Click "Decode Images" to see results, or "Download as ZIP" to get files ## 📋 Input Formats - Single Base64 image data - JSON format (multiple images supported) - DECIMER output format (structure images) ## 📚 Citation If you use MolScribe in your research, please cite: ``` @article{MolScribe, title = {{MolScribe}: Robust Molecular Structure Recognition with Image-to-Graph Generation}, author = {Yujie Qian and Jiang Guo and Zhengkai Tu and Zhening Li and Connor W. Coley and Regina Barzilay}, journal = {Journal of Chemical Information and Modeling}, publisher = {American Chemical Society ({ACS})}, doi = {10.1021/acs.jcim.2c01480}, year = 2023, } ``` """) with gr.Row(): with gr.Column(): input_data = gr.Textbox( label="📥 Base64 Image Data or JSON", lines=10, placeholder="Enter Base64 image data or JSON format data...", show_copy_button=True ) molscribe_checkbox = gr.Checkbox( label="🧬 Include MolScribe MOL conversion", value=False, info="For chemical structures, also generate MOL files" ) with gr.Row(): decode_btn = gr.Button( "🖼️ Decode Images", variant="primary", size="lg" ) download_btn = gr.Button( "📦 Download as ZIP", variant="secondary", size="lg" ) with gr.Column(): result_output = gr.Textbox( label="📊 Conversion Results", lines=15, show_copy_button=True, placeholder="Conversion results will appear here...", interactive=False ) zip_download = gr.File( label="📦 Download ZIP File" ) with gr.Accordion("📖 Input Format Examples", open=False): gr.Markdown(""" ### Single Base64 Image ``` iVBORw0KGgoAAAANSUhEUgAA... ``` ### Data URL Format ``` ... ``` ### JSON Format (Single Image) ```json { "image_base64": "iVBORw0KGgoAAAANSUhEUgAA...", "filename": "structure.png" } ``` ### DECIMER Output Format ```json { "pages": [ { "page_number": 1, "structures": [ { "segment_id": 1, "image_base64": "iVBORw0KGgoAAAANSUhEUgAA..." } ] } ] } ``` """) with gr.Accordion("📖 Output Format Example", open=False): gr.Markdown(""" ### JSON Conversion Results (Display & Inside ZIP) """) gr.Code(""" { "total_processed": 2, "successful_conversions": 2, "failed_conversions": 0, "molscribe_enabled": true, "molscribe_conversions": 2, "download_info": { "total_files": 2, "files_available": true }, "results": [ { "success": true, "filename": "decoded_image.png", "image_format": "PNG", "image_mode": "RGB", "image_size": { "width": 256, "height": 256 }, "original_data_size": 12345, "decoded_data_size": 8192, "molscribe": { "success": true, "smiles": "c1ccccc1", "molfile": "\\n Mrv2014 01011200\\n\\n 6 6 0 0 0 0...", "confidence": 0.9876 } } ] } """, language="json") gr.Markdown(""" ### ZIP File Structure Example ``` chemical_structures.zip ├── conversion_results.json ← JSON data above ├── page_1_structure_1.png ← Decoded image ├── page_1_structure_1.mol ← MOL generated by MolScribe ├── page_1_structure_2.png ├── page_1_structure_2.mol └── ... ``` """) # Event handlers def decode_and_show_results(input_data, include_molscribe): return decode_base64_to_images(input_data, include_molscribe) def create_and_show_zip(input_data, include_molscribe): """Create ZIP file with error handling""" try: if not input_data or not input_data.strip(): logger.warning("No input data provided for ZIP creation") return None logger.info(f"Creating ZIP file... (MolScribe: {include_molscribe})") zip_path = create_zip_from_base64(input_data, include_molscribe) if zip_path and os.path.exists(zip_path): file_size = os.path.getsize(zip_path) logger.info(f"ZIP file created successfully: {zip_path} ({file_size} bytes)") return zip_path else: logger.error("ZIP file creation failed or file not found") return None except Exception as e: logger.error(f"Error in create_and_show_zip: {e}") import traceback logger.error(traceback.format_exc()) return None decode_btn.click( fn=decode_and_show_results, inputs=[input_data, molscribe_checkbox], outputs=[result_output], show_progress=True ) download_btn.click( fn=create_and_show_zip, inputs=[input_data, molscribe_checkbox], outputs=[zip_download], show_progress=True ) return demo # Main execution if __name__ == "__main__": logger.info("Running in CPU environment") demo = create_demo() demo.launch(mcp_server=False)