update
Browse files- examples/silero_vad_by_webrtcvad/run.sh +17 -3
- examples/silero_vad_by_webrtcvad/step_1_prepare_data.py +1 -35
- examples/silero_vad_by_webrtcvad/step_2_make_vad_segments.py +138 -0
- examples/silero_vad_by_webrtcvad/{step_2_train_model.py → step_3_train_model.py} +10 -10
- toolbox/torchaudio/models/vad/fsmn_vad/__init__.py +6 -0
- toolbox/torchaudio/models/vad/fsmn_vad/fsmn_encoder.py +285 -0
- toolbox/torchaudio/models/vad/fsmn_vad/modeling_fsmn_vad.py +18 -0
- toolbox/torchaudio/models/vad/silero_vad/modeling_silero_vad.py +10 -8
- toolbox/webrtcvad/vad.py +19 -0
examples/silero_vad_by_webrtcvad/run.sh
CHANGED
|
@@ -74,6 +74,9 @@ evaluation_audio_dir="${file_dir}/evaluation_audio"
|
|
| 74 |
train_dataset="${file_dir}/train.jsonl"
|
| 75 |
valid_dataset="${file_dir}/valid.jsonl"
|
| 76 |
|
|
|
|
|
|
|
|
|
|
| 77 |
$verbose && echo "system_version: ${system_version}"
|
| 78 |
$verbose && echo "file_folder_name: ${file_folder_name}"
|
| 79 |
|
|
@@ -89,7 +92,6 @@ if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
|
| 89 |
$verbose && echo "stage 1: prepare data"
|
| 90 |
cd "${work_dir}" || exit 1
|
| 91 |
python3 step_1_prepare_data.py \
|
| 92 |
-
--file_dir "${file_dir}" \
|
| 93 |
--noise_dir "${noise_dir}" \
|
| 94 |
--speech_dir "${speech_dir}" \
|
| 95 |
--train_dataset "${train_dataset}" \
|
|
@@ -100,11 +102,23 @@ fi
|
|
| 100 |
|
| 101 |
|
| 102 |
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
| 103 |
-
$verbose && echo "stage 2:
|
| 104 |
cd "${work_dir}" || exit 1
|
| 105 |
-
python3
|
| 106 |
--train_dataset "${train_dataset}" \
|
| 107 |
--valid_dataset "${valid_dataset}" \
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
--serialization_dir "${file_dir}" \
|
| 109 |
--config_file "${config_file}" \
|
| 110 |
|
|
|
|
| 74 |
train_dataset="${file_dir}/train.jsonl"
|
| 75 |
valid_dataset="${file_dir}/valid.jsonl"
|
| 76 |
|
| 77 |
+
train_vad_dataset="${file_dir}/train-vad.jsonl"
|
| 78 |
+
valid_vad_dataset="${file_dir}/valid-vad.jsonl"
|
| 79 |
+
|
| 80 |
$verbose && echo "system_version: ${system_version}"
|
| 81 |
$verbose && echo "file_folder_name: ${file_folder_name}"
|
| 82 |
|
|
|
|
| 92 |
$verbose && echo "stage 1: prepare data"
|
| 93 |
cd "${work_dir}" || exit 1
|
| 94 |
python3 step_1_prepare_data.py \
|
|
|
|
| 95 |
--noise_dir "${noise_dir}" \
|
| 96 |
--speech_dir "${speech_dir}" \
|
| 97 |
--train_dataset "${train_dataset}" \
|
|
|
|
| 102 |
|
| 103 |
|
| 104 |
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
| 105 |
+
$verbose && echo "stage 2: make vad segments"
|
| 106 |
cd "${work_dir}" || exit 1
|
| 107 |
+
python3 step_2_make_vad_segments.py \
|
| 108 |
--train_dataset "${train_dataset}" \
|
| 109 |
--valid_dataset "${valid_dataset}" \
|
| 110 |
+
--train_vad_dataset "${train_vad_dataset}" \
|
| 111 |
+
--valid_vad_dataset "${valid_vad_dataset}" \
|
| 112 |
+
|
| 113 |
+
fi
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
| 117 |
+
$verbose && echo "stage 3: train model"
|
| 118 |
+
cd "${work_dir}" || exit 1
|
| 119 |
+
python3 step_3_train_model.py \
|
| 120 |
+
--train_dataset "${train_vad_dataset}" \
|
| 121 |
+
--valid_dataset "${valid_vad_dataset}" \
|
| 122 |
--serialization_dir "${file_dir}" \
|
| 123 |
--config_file "${config_file}" \
|
| 124 |
|
examples/silero_vad_by_webrtcvad/step_1_prepare_data.py
CHANGED
|
@@ -12,16 +12,11 @@ sys.path.append(os.path.join(pwd, "../../"))
|
|
| 12 |
|
| 13 |
import librosa
|
| 14 |
import numpy as np
|
| 15 |
-
from scipy.io import wavfile
|
| 16 |
from tqdm import tqdm
|
| 17 |
|
| 18 |
-
from toolbox.webrtcvad.vad import WebRTCVad
|
| 19 |
-
|
| 20 |
|
| 21 |
def get_args():
|
| 22 |
parser = argparse.ArgumentParser()
|
| 23 |
-
parser.add_argument("--file_dir", default="./", type=str)
|
| 24 |
-
|
| 25 |
parser.add_argument(
|
| 26 |
"--noise_dir",
|
| 27 |
default=r"E:\Users\tianx\HuggingDatasets\nx_noise\data\noise",
|
|
@@ -36,7 +31,7 @@ def get_args():
|
|
| 36 |
parser.add_argument("--train_dataset", default="train.jsonl", type=str)
|
| 37 |
parser.add_argument("--valid_dataset", default="valid.jsonl", type=str)
|
| 38 |
|
| 39 |
-
parser.add_argument("--duration", default=
|
| 40 |
parser.add_argument("--min_snr_db", default=-10, type=float)
|
| 41 |
parser.add_argument("--max_snr_db", default=20, type=float)
|
| 42 |
|
|
@@ -44,12 +39,6 @@ def get_args():
|
|
| 44 |
|
| 45 |
parser.add_argument("--max_count", default=-1, type=int)
|
| 46 |
|
| 47 |
-
# vad
|
| 48 |
-
parser.add_argument("--agg", default=3, type=int)
|
| 49 |
-
parser.add_argument("--frame_duration_ms", default=30, type=int)
|
| 50 |
-
parser.add_argument("--padding_duration_ms", default=30, type=int)
|
| 51 |
-
parser.add_argument("--silence_duration_threshold", default=0.3, type=float)
|
| 52 |
-
|
| 53 |
args = parser.parse_args()
|
| 54 |
return args
|
| 55 |
|
|
@@ -85,9 +74,6 @@ def target_second_signal_generator(data_dir: str, duration: int = 2, sample_rate
|
|
| 85 |
def main():
|
| 86 |
args = get_args()
|
| 87 |
|
| 88 |
-
file_dir = Path(args.file_dir)
|
| 89 |
-
file_dir.mkdir(exist_ok=True)
|
| 90 |
-
|
| 91 |
noise_dir = Path(args.noise_dir)
|
| 92 |
speech_dir = Path(args.speech_dir)
|
| 93 |
|
|
@@ -104,14 +90,6 @@ def main():
|
|
| 104 |
max_epoch=1,
|
| 105 |
)
|
| 106 |
|
| 107 |
-
w_vad = WebRTCVad(
|
| 108 |
-
agg=args.agg,
|
| 109 |
-
frame_duration_ms=args.frame_duration_ms,
|
| 110 |
-
padding_duration_ms=args.padding_duration_ms,
|
| 111 |
-
silence_duration_threshold=args.silence_duration_threshold,
|
| 112 |
-
sample_rate=args.target_sample_rate,
|
| 113 |
-
)
|
| 114 |
-
|
| 115 |
count = 0
|
| 116 |
process_bar = tqdm(desc="build dataset jsonl")
|
| 117 |
with open(args.train_dataset, "w", encoding="utf-8") as ftrain, open(args.valid_dataset, "w", encoding="utf-8") as fvalid:
|
|
@@ -130,14 +108,6 @@ def main():
|
|
| 130 |
speech_offset = speech["offset"]
|
| 131 |
speech_duration = speech["duration"]
|
| 132 |
|
| 133 |
-
# vad
|
| 134 |
-
_, signal = wavfile.read(speech_filename)
|
| 135 |
-
vad_segments = list()
|
| 136 |
-
segments = w_vad.vad(signal)
|
| 137 |
-
vad_segments += segments
|
| 138 |
-
segments = w_vad.last_vad_segments()
|
| 139 |
-
vad_segments += segments
|
| 140 |
-
|
| 141 |
# row
|
| 142 |
random1 = random.random()
|
| 143 |
random2 = random.random()
|
|
@@ -157,8 +127,6 @@ def main():
|
|
| 157 |
|
| 158 |
"snr_db": random.uniform(args.min_snr_db, args.max_snr_db),
|
| 159 |
|
| 160 |
-
"vad_segments": vad_segments,
|
| 161 |
-
|
| 162 |
"random1": random1,
|
| 163 |
}
|
| 164 |
row = json.dumps(row, ensure_ascii=False)
|
|
@@ -173,9 +141,7 @@ def main():
|
|
| 173 |
|
| 174 |
process_bar.update(n=1)
|
| 175 |
process_bar.set_postfix({
|
| 176 |
-
# "duration_seconds": round(duration_seconds, 4),
|
| 177 |
"duration_hours": round(duration_hours, 4),
|
| 178 |
-
|
| 179 |
})
|
| 180 |
|
| 181 |
return
|
|
|
|
| 12 |
|
| 13 |
import librosa
|
| 14 |
import numpy as np
|
|
|
|
| 15 |
from tqdm import tqdm
|
| 16 |
|
|
|
|
|
|
|
| 17 |
|
| 18 |
def get_args():
|
| 19 |
parser = argparse.ArgumentParser()
|
|
|
|
|
|
|
| 20 |
parser.add_argument(
|
| 21 |
"--noise_dir",
|
| 22 |
default=r"E:\Users\tianx\HuggingDatasets\nx_noise\data\noise",
|
|
|
|
| 31 |
parser.add_argument("--train_dataset", default="train.jsonl", type=str)
|
| 32 |
parser.add_argument("--valid_dataset", default="valid.jsonl", type=str)
|
| 33 |
|
| 34 |
+
parser.add_argument("--duration", default=6.0, type=float)
|
| 35 |
parser.add_argument("--min_snr_db", default=-10, type=float)
|
| 36 |
parser.add_argument("--max_snr_db", default=20, type=float)
|
| 37 |
|
|
|
|
| 39 |
|
| 40 |
parser.add_argument("--max_count", default=-1, type=int)
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
args = parser.parse_args()
|
| 43 |
return args
|
| 44 |
|
|
|
|
| 74 |
def main():
|
| 75 |
args = get_args()
|
| 76 |
|
|
|
|
|
|
|
|
|
|
| 77 |
noise_dir = Path(args.noise_dir)
|
| 78 |
speech_dir = Path(args.speech_dir)
|
| 79 |
|
|
|
|
| 90 |
max_epoch=1,
|
| 91 |
)
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
count = 0
|
| 94 |
process_bar = tqdm(desc="build dataset jsonl")
|
| 95 |
with open(args.train_dataset, "w", encoding="utf-8") as ftrain, open(args.valid_dataset, "w", encoding="utf-8") as fvalid:
|
|
|
|
| 108 |
speech_offset = speech["offset"]
|
| 109 |
speech_duration = speech["duration"]
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
# row
|
| 112 |
random1 = random.random()
|
| 113 |
random2 = random.random()
|
|
|
|
| 127 |
|
| 128 |
"snr_db": random.uniform(args.min_snr_db, args.max_snr_db),
|
| 129 |
|
|
|
|
|
|
|
| 130 |
"random1": random1,
|
| 131 |
}
|
| 132 |
row = json.dumps(row, ensure_ascii=False)
|
|
|
|
| 141 |
|
| 142 |
process_bar.update(n=1)
|
| 143 |
process_bar.set_postfix({
|
|
|
|
| 144 |
"duration_hours": round(duration_hours, 4),
|
|
|
|
| 145 |
})
|
| 146 |
|
| 147 |
return
|
examples/silero_vad_by_webrtcvad/step_2_make_vad_segments.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
import argparse
|
| 4 |
+
import json
|
| 5 |
+
import os
|
| 6 |
+
import sys
|
| 7 |
+
|
| 8 |
+
pwd = os.path.abspath(os.path.dirname(__file__))
|
| 9 |
+
sys.path.append(os.path.join(pwd, "../../"))
|
| 10 |
+
|
| 11 |
+
import librosa
|
| 12 |
+
import numpy as np
|
| 13 |
+
from tqdm import tqdm
|
| 14 |
+
|
| 15 |
+
from toolbox.webrtcvad.vad import WebRTCVad
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def get_args():
|
| 19 |
+
parser = argparse.ArgumentParser()
|
| 20 |
+
|
| 21 |
+
parser.add_argument("--train_dataset", default="train.jsonl", type=str)
|
| 22 |
+
parser.add_argument("--valid_dataset", default="valid.jsonl", type=str)
|
| 23 |
+
|
| 24 |
+
parser.add_argument("--train_vad_dataset", default="train-vad.jsonl", type=str)
|
| 25 |
+
parser.add_argument("--valid_vad_dataset", default="valid-vad.jsonl", type=str)
|
| 26 |
+
|
| 27 |
+
parser.add_argument("--target_sample_rate", default=8000, type=int)
|
| 28 |
+
|
| 29 |
+
# vad
|
| 30 |
+
parser.add_argument("--agg", default=3, type=int)
|
| 31 |
+
parser.add_argument("--frame_duration_ms", default=30, type=int)
|
| 32 |
+
parser.add_argument("--padding_duration_ms", default=30, type=int)
|
| 33 |
+
parser.add_argument("--silence_duration_threshold", default=0.3, type=float)
|
| 34 |
+
|
| 35 |
+
args = parser.parse_args()
|
| 36 |
+
return args
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def main():
|
| 40 |
+
args = get_args()
|
| 41 |
+
|
| 42 |
+
w_vad = WebRTCVad(
|
| 43 |
+
agg=args.agg,
|
| 44 |
+
frame_duration_ms=args.frame_duration_ms,
|
| 45 |
+
padding_duration_ms=args.padding_duration_ms,
|
| 46 |
+
silence_duration_threshold=args.silence_duration_threshold,
|
| 47 |
+
sample_rate=args.target_sample_rate,
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# valid
|
| 51 |
+
count = 0
|
| 52 |
+
process_bar = tqdm(desc="process valid dataset jsonl")
|
| 53 |
+
with (open(args.valid_dataset, "r", encoding="utf-8") as fvalid,
|
| 54 |
+
open(args.valid_vad_dataset, "w", encoding="utf-8") as fvalid_vad):
|
| 55 |
+
for row in fvalid:
|
| 56 |
+
row = json.loads(row)
|
| 57 |
+
|
| 58 |
+
speech_filename = row["speech_filename"]
|
| 59 |
+
speech_offset = row["speech_offset"]
|
| 60 |
+
speech_duration = row["speech_duration"]
|
| 61 |
+
|
| 62 |
+
waveform, _ = librosa.load(
|
| 63 |
+
speech_filename,
|
| 64 |
+
sr=args.expected_sample_rate,
|
| 65 |
+
offset=speech_offset,
|
| 66 |
+
duration=speech_duration,
|
| 67 |
+
)
|
| 68 |
+
waveform = np.array(waveform * (1 << 15), dtype=np.int16)
|
| 69 |
+
|
| 70 |
+
# vad
|
| 71 |
+
vad_segments = list()
|
| 72 |
+
segments = w_vad.vad(waveform)
|
| 73 |
+
vad_segments += segments
|
| 74 |
+
segments = w_vad.last_vad_segments()
|
| 75 |
+
vad_segments += segments
|
| 76 |
+
w_vad.reset()
|
| 77 |
+
|
| 78 |
+
row["vad_segments"] = vad_segments
|
| 79 |
+
|
| 80 |
+
row = json.dumps(row, ensure_ascii=False)
|
| 81 |
+
fvalid_vad.write(f"{row}\n")
|
| 82 |
+
|
| 83 |
+
count += 1
|
| 84 |
+
duration_seconds = count * args.duration
|
| 85 |
+
duration_hours = duration_seconds / 3600
|
| 86 |
+
|
| 87 |
+
process_bar.update(n=1)
|
| 88 |
+
process_bar.set_postfix({
|
| 89 |
+
"duration_hours": round(duration_hours, 4),
|
| 90 |
+
})
|
| 91 |
+
|
| 92 |
+
# train
|
| 93 |
+
count = 0
|
| 94 |
+
process_bar = tqdm(desc="process train dataset jsonl")
|
| 95 |
+
with (open(args.train_dataset, "r", encoding="utf-8") as ftrain,
|
| 96 |
+
open(args.train_vad_dataset, "w", encoding="utf-8") as ftrain_vad):
|
| 97 |
+
for row in ftrain:
|
| 98 |
+
row = json.loads(row)
|
| 99 |
+
|
| 100 |
+
speech_filename = row["speech_filename"]
|
| 101 |
+
speech_offset = row["speech_offset"]
|
| 102 |
+
speech_duration = row["speech_duration"]
|
| 103 |
+
|
| 104 |
+
waveform, _ = librosa.load(
|
| 105 |
+
speech_filename,
|
| 106 |
+
sr=args.expected_sample_rate,
|
| 107 |
+
offset=speech_offset,
|
| 108 |
+
duration=speech_duration,
|
| 109 |
+
)
|
| 110 |
+
waveform = np.array(waveform * (1 << 15), dtype=np.int16)
|
| 111 |
+
|
| 112 |
+
# vad
|
| 113 |
+
vad_segments = list()
|
| 114 |
+
segments = w_vad.vad(waveform)
|
| 115 |
+
vad_segments += segments
|
| 116 |
+
segments = w_vad.last_vad_segments()
|
| 117 |
+
vad_segments += segments
|
| 118 |
+
w_vad.reset()
|
| 119 |
+
|
| 120 |
+
row["vad_segments"] = vad_segments
|
| 121 |
+
|
| 122 |
+
row = json.dumps(row, ensure_ascii=False)
|
| 123 |
+
ftrain_vad.write(f"{row}\n")
|
| 124 |
+
|
| 125 |
+
count += 1
|
| 126 |
+
duration_seconds = count * args.duration
|
| 127 |
+
duration_hours = duration_seconds / 3600
|
| 128 |
+
|
| 129 |
+
process_bar.update(n=1)
|
| 130 |
+
process_bar.set_postfix({
|
| 131 |
+
"duration_hours": round(duration_hours, 4),
|
| 132 |
+
})
|
| 133 |
+
|
| 134 |
+
return
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
if __name__ == "__main__":
|
| 138 |
+
main()
|
examples/silero_vad_by_webrtcvad/{step_2_train_model.py → step_3_train_model.py}
RENAMED
|
@@ -246,19 +246,19 @@ def main():
|
|
| 246 |
# noisy_audios shape: [b, num_samples]
|
| 247 |
num_samples = noisy_audios.shape[-1]
|
| 248 |
|
| 249 |
-
|
| 250 |
|
| 251 |
-
targets = BaseVadLoss.get_targets(
|
| 252 |
|
| 253 |
-
bce_loss = bce_loss_fn.forward(
|
| 254 |
-
dice_loss = dice_loss_fn.forward(
|
| 255 |
|
| 256 |
loss = 1.0 * bce_loss + 1.0 * dice_loss
|
| 257 |
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
|
| 258 |
logger.info(f"find nan or inf in loss. continue.")
|
| 259 |
continue
|
| 260 |
|
| 261 |
-
vad_accuracy_metrics_fn.__call__(
|
| 262 |
|
| 263 |
optimizer.zero_grad()
|
| 264 |
loss.backward()
|
|
@@ -311,19 +311,19 @@ def main():
|
|
| 311 |
# noisy_audios shape: [b, num_samples]
|
| 312 |
num_samples = noisy_audios.shape[-1]
|
| 313 |
|
| 314 |
-
|
| 315 |
|
| 316 |
-
targets = BaseVadLoss.get_targets(
|
| 317 |
|
| 318 |
-
bce_loss = bce_loss_fn.forward(
|
| 319 |
-
dice_loss = dice_loss_fn.forward(
|
| 320 |
|
| 321 |
loss = 1.0 * bce_loss + 1.0 * dice_loss
|
| 322 |
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
|
| 323 |
logger.info(f"find nan or inf in loss. continue.")
|
| 324 |
continue
|
| 325 |
|
| 326 |
-
vad_accuracy_metrics_fn.__call__(
|
| 327 |
|
| 328 |
total_loss += loss.item()
|
| 329 |
total_bce_loss += bce_loss.item()
|
|
|
|
| 246 |
# noisy_audios shape: [b, num_samples]
|
| 247 |
num_samples = noisy_audios.shape[-1]
|
| 248 |
|
| 249 |
+
logits, probs = model.forward(noisy_audios)
|
| 250 |
|
| 251 |
+
targets = BaseVadLoss.get_targets(probs, batch_vad_segments, duration=num_samples / config.sample_rate)
|
| 252 |
|
| 253 |
+
bce_loss = bce_loss_fn.forward(probs, targets)
|
| 254 |
+
dice_loss = dice_loss_fn.forward(probs, targets)
|
| 255 |
|
| 256 |
loss = 1.0 * bce_loss + 1.0 * dice_loss
|
| 257 |
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
|
| 258 |
logger.info(f"find nan or inf in loss. continue.")
|
| 259 |
continue
|
| 260 |
|
| 261 |
+
vad_accuracy_metrics_fn.__call__(probs, targets)
|
| 262 |
|
| 263 |
optimizer.zero_grad()
|
| 264 |
loss.backward()
|
|
|
|
| 311 |
# noisy_audios shape: [b, num_samples]
|
| 312 |
num_samples = noisy_audios.shape[-1]
|
| 313 |
|
| 314 |
+
logits, probs = model.forward(noisy_audios)
|
| 315 |
|
| 316 |
+
targets = BaseVadLoss.get_targets(probs, batch_vad_segments, duration=num_samples / config.sample_rate)
|
| 317 |
|
| 318 |
+
bce_loss = bce_loss_fn.forward(probs, targets)
|
| 319 |
+
dice_loss = dice_loss_fn.forward(probs, targets)
|
| 320 |
|
| 321 |
loss = 1.0 * bce_loss + 1.0 * dice_loss
|
| 322 |
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
|
| 323 |
logger.info(f"find nan or inf in loss. continue.")
|
| 324 |
continue
|
| 325 |
|
| 326 |
+
vad_accuracy_metrics_fn.__call__(probs, targets)
|
| 327 |
|
| 328 |
total_loss += loss.item()
|
| 329 |
total_bce_loss += bce_loss.item()
|
toolbox/torchaudio/models/vad/fsmn_vad/__init__.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
if __name__ == "__main__":
|
| 6 |
+
pass
|
toolbox/torchaudio/models/vad/fsmn_vad/fsmn_encoder.py
ADDED
|
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
from typing import Tuple, Dict, List
|
| 4 |
+
import copy
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class LinearTransform(nn.Module):
|
| 14 |
+
def __init__(self,
|
| 15 |
+
input_dim: int,
|
| 16 |
+
output_dim: int,
|
| 17 |
+
):
|
| 18 |
+
super(LinearTransform, self).__init__()
|
| 19 |
+
self.input_dim = input_dim
|
| 20 |
+
self.output_dim = output_dim
|
| 21 |
+
|
| 22 |
+
self.linear = nn.Linear(input_dim, output_dim, bias=False)
|
| 23 |
+
|
| 24 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
| 25 |
+
output = self.linear.forward(inputs)
|
| 26 |
+
return output
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class AffineTransform(nn.Module):
|
| 30 |
+
def __init__(self,
|
| 31 |
+
input_dim: int,
|
| 32 |
+
output_dim: int,
|
| 33 |
+
):
|
| 34 |
+
super(AffineTransform, self).__init__()
|
| 35 |
+
self.input_dim = input_dim
|
| 36 |
+
self.output_dim = output_dim
|
| 37 |
+
|
| 38 |
+
self.linear = nn.Linear(input_dim, output_dim)
|
| 39 |
+
|
| 40 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
| 41 |
+
output = self.linear.forward(inputs)
|
| 42 |
+
return output
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class RectifiedLinear(nn.Module):
|
| 46 |
+
def __init__(self,
|
| 47 |
+
input_dim: int,
|
| 48 |
+
output_dim: int,
|
| 49 |
+
):
|
| 50 |
+
super(RectifiedLinear, self).__init__()
|
| 51 |
+
self.dim = input_dim
|
| 52 |
+
|
| 53 |
+
self.relu = nn.ReLU()
|
| 54 |
+
self.dropout = nn.Dropout(0.1)
|
| 55 |
+
|
| 56 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
| 57 |
+
output = self.relu(inputs)
|
| 58 |
+
return output
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class FSMNBlock(nn.Module):
|
| 62 |
+
def __init__(self,
|
| 63 |
+
hidden_size: int,
|
| 64 |
+
lorder: int,
|
| 65 |
+
rorder: int = -1,
|
| 66 |
+
lstride: int = 1,
|
| 67 |
+
rstride: int = 1,
|
| 68 |
+
):
|
| 69 |
+
super(FSMNBlock, self).__init__()
|
| 70 |
+
self.hidden_size = hidden_size
|
| 71 |
+
|
| 72 |
+
self.lorder = lorder
|
| 73 |
+
self.rorder = rorder
|
| 74 |
+
self.lstride = lstride
|
| 75 |
+
self.rstride = rstride
|
| 76 |
+
|
| 77 |
+
self.conv_left = nn.Conv2d(
|
| 78 |
+
in_channels=self.hidden_size,
|
| 79 |
+
out_channels=self.hidden_size,
|
| 80 |
+
kernel_size=[lorder, 1],
|
| 81 |
+
dilation=[lstride, 1],
|
| 82 |
+
groups=self.hidden_size,
|
| 83 |
+
bias=False,
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
self.conv_right = None
|
| 87 |
+
if self.rorder > 0:
|
| 88 |
+
self.conv_right = nn.Conv2d(
|
| 89 |
+
in_channels=self.hidden_size,
|
| 90 |
+
out_channels=self.hidden_size,
|
| 91 |
+
kernel_size=[rorder, 1],
|
| 92 |
+
dilation=[rstride, 1],
|
| 93 |
+
groups=self.hidden_size,
|
| 94 |
+
bias=False,
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
def forward(self,
|
| 98 |
+
inputs: torch.Tensor,
|
| 99 |
+
cache: torch.Tensor = None,
|
| 100 |
+
):
|
| 101 |
+
# inputs shape: [b, t, f]
|
| 102 |
+
x = torch.unsqueeze(inputs, dim=1)
|
| 103 |
+
# x shape: [b, 1, t, f]
|
| 104 |
+
x_per = x.permute(0, 3, 2, 1)
|
| 105 |
+
# x shape: [b, f, t, 1] / [b, c, t, 1]
|
| 106 |
+
|
| 107 |
+
if cache is None:
|
| 108 |
+
y_left = F.pad(x_per, pad=[0, 0, (self.lorder - 1) * self.lstride, 0])
|
| 109 |
+
else:
|
| 110 |
+
cache = cache.to(x_per.device)
|
| 111 |
+
y_left = torch.cat(tensors=(cache, x_per), dim=2)
|
| 112 |
+
cache = y_left[:, :, -(self.lorder - 1) * self.lstride:, :]
|
| 113 |
+
# cache shape: [b, f, t_pad, 1]
|
| 114 |
+
# y_left shape: [b, f, t', 1]
|
| 115 |
+
y_left = self.conv_left(y_left)
|
| 116 |
+
# y_left shape: [b, f, t, 1]
|
| 117 |
+
|
| 118 |
+
out = x_per + y_left
|
| 119 |
+
# out shape: [b, f, t, 1]
|
| 120 |
+
|
| 121 |
+
if self.conv_right is not None:
|
| 122 |
+
y_right = F.pad(x_per, pad=[0, 0, 0, self.rorder * self.rstride])
|
| 123 |
+
# y_right shape: [b, f, t', 1]
|
| 124 |
+
|
| 125 |
+
y_right = y_right[:, :, self.rstride:, :]
|
| 126 |
+
y_right = self.conv_right(y_right)
|
| 127 |
+
out += y_right
|
| 128 |
+
|
| 129 |
+
# out shape: [b, f, t, 1]
|
| 130 |
+
out_per = out.permute(0, 3, 2, 1)
|
| 131 |
+
# out_per shape: [b, 1, t, f]
|
| 132 |
+
|
| 133 |
+
output = out_per.squeeze(1)
|
| 134 |
+
# output shape: [b, t, f]
|
| 135 |
+
return output, cache
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
class BasicBlock(nn.Module):
|
| 139 |
+
def __init__(self,
|
| 140 |
+
input_size: int,
|
| 141 |
+
hidden_size: int,
|
| 142 |
+
lorder: int,
|
| 143 |
+
rorder: int = -1,
|
| 144 |
+
lstride: int = 1,
|
| 145 |
+
rstride: int = 1,
|
| 146 |
+
):
|
| 147 |
+
super(BasicBlock, self).__init__()
|
| 148 |
+
self.lorder = lorder
|
| 149 |
+
self.rorder = rorder
|
| 150 |
+
self.lstride = lstride
|
| 151 |
+
self.rstride = rstride
|
| 152 |
+
|
| 153 |
+
self.linear = LinearTransform(input_size, hidden_size)
|
| 154 |
+
self.fsmn_block = FSMNBlock(
|
| 155 |
+
hidden_size=hidden_size,
|
| 156 |
+
lorder=lorder,
|
| 157 |
+
rorder=rorder,
|
| 158 |
+
lstride=lstride,
|
| 159 |
+
rstride=rstride,
|
| 160 |
+
)
|
| 161 |
+
self.affine = AffineTransform(hidden_size, input_size)
|
| 162 |
+
self.relu = RectifiedLinear(input_size, input_size)
|
| 163 |
+
|
| 164 |
+
def forward(self,
|
| 165 |
+
inputs: torch.Tensor,
|
| 166 |
+
cache: torch.Tensor = None,
|
| 167 |
+
):
|
| 168 |
+
# inputs shape: [b, t, f]
|
| 169 |
+
x1 = self.linear.forward(inputs)
|
| 170 |
+
# x1 shape: [b, t, f']
|
| 171 |
+
|
| 172 |
+
if cache is None:
|
| 173 |
+
# cache shape: [b, f', t_pad, 1]
|
| 174 |
+
cache = torch.zeros(size=(x1.shape[0], x1.shape[-1], (self.lorder - 1) * self.lstride, 1))
|
| 175 |
+
x2, new_cache = self.fsmn_block.forward(x1, cache=cache)
|
| 176 |
+
# x2 shape: [b, t, f']
|
| 177 |
+
|
| 178 |
+
x3 = self.affine.forward(x2)
|
| 179 |
+
# x3 shape: [b, t, f]
|
| 180 |
+
|
| 181 |
+
x4 = self.relu(x3)
|
| 182 |
+
return x4, new_cache
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
class FSMN(nn.Module):
|
| 186 |
+
def __init__(
|
| 187 |
+
self,
|
| 188 |
+
input_size: int,
|
| 189 |
+
input_affine_size: int,
|
| 190 |
+
hidden_size: int,
|
| 191 |
+
basic_block_layers: int,
|
| 192 |
+
basic_block_hidden_size: int,
|
| 193 |
+
basic_block_lorder: int,
|
| 194 |
+
basic_block_rorder: int,
|
| 195 |
+
basic_block_lstride: int,
|
| 196 |
+
basic_block_rstride: int,
|
| 197 |
+
output_affine_size: int,
|
| 198 |
+
output_size: int,
|
| 199 |
+
use_softmax: bool = True,
|
| 200 |
+
):
|
| 201 |
+
super(FSMN, self).__init__()
|
| 202 |
+
self.input_size = input_size
|
| 203 |
+
self.input_affine_size = input_affine_size
|
| 204 |
+
self.hidden_size = hidden_size
|
| 205 |
+
|
| 206 |
+
self.basic_block_layers = basic_block_layers
|
| 207 |
+
|
| 208 |
+
self.output_affine_size = output_affine_size
|
| 209 |
+
self.output_size = output_size
|
| 210 |
+
|
| 211 |
+
self.in_linear1 = AffineTransform(input_size, input_affine_size)
|
| 212 |
+
self.in_linear2 = AffineTransform(input_affine_size, hidden_size)
|
| 213 |
+
self.relu = RectifiedLinear(hidden_size, hidden_size)
|
| 214 |
+
|
| 215 |
+
self.fsmn_basic_block_list = nn.ModuleList(modules=[
|
| 216 |
+
BasicBlock(input_size=hidden_size,
|
| 217 |
+
hidden_size=basic_block_hidden_size,
|
| 218 |
+
lorder=basic_block_lorder,
|
| 219 |
+
rorder=basic_block_rorder,
|
| 220 |
+
lstride=basic_block_lstride,
|
| 221 |
+
rstride=basic_block_rstride,
|
| 222 |
+
)
|
| 223 |
+
for _ in range(basic_block_layers)
|
| 224 |
+
])
|
| 225 |
+
self.out_linear1 = AffineTransform(hidden_size, output_affine_size)
|
| 226 |
+
self.out_linear2 = AffineTransform(output_affine_size, output_size)
|
| 227 |
+
|
| 228 |
+
self.use_softmax = use_softmax
|
| 229 |
+
if self.use_softmax:
|
| 230 |
+
self.softmax = nn.Softmax(dim=-1)
|
| 231 |
+
|
| 232 |
+
def forward(self,
|
| 233 |
+
inputs: torch.Tensor,
|
| 234 |
+
cache_list: List[torch.Tensor] = None,
|
| 235 |
+
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
|
| 236 |
+
# inputs shape: [b, t, f]
|
| 237 |
+
x = self.in_linear1.forward(inputs)
|
| 238 |
+
# x shape: [b, t, input_affine_dim]
|
| 239 |
+
x = self.in_linear2.forward(x)
|
| 240 |
+
# x shape: [b, t, f]
|
| 241 |
+
|
| 242 |
+
x = self.relu(x)
|
| 243 |
+
|
| 244 |
+
new_cache_list = list()
|
| 245 |
+
for idx, fsmn_basic_block in enumerate(self.fsmn_basic_block_list):
|
| 246 |
+
cache = None if cache_list is None else cache_list[idx]
|
| 247 |
+
x, new_cache = fsmn_basic_block.forward(x, cache)
|
| 248 |
+
new_cache_list.append(new_cache)
|
| 249 |
+
|
| 250 |
+
# x shape: [b, t, f]
|
| 251 |
+
x = self.out_linear1.forward(x)
|
| 252 |
+
outputs = self.out_linear2.forward(x)
|
| 253 |
+
# outputs shape: [b, t, f]
|
| 254 |
+
|
| 255 |
+
if self.use_softmax:
|
| 256 |
+
outputs = self.softmax(outputs)
|
| 257 |
+
return outputs, new_cache_list
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
def main():
|
| 261 |
+
fsmn = FSMN(
|
| 262 |
+
input_size=32,
|
| 263 |
+
input_affine_size=16,
|
| 264 |
+
hidden_size=16,
|
| 265 |
+
basic_block_layers=3,
|
| 266 |
+
basic_block_hidden_size=16,
|
| 267 |
+
basic_block_lorder=3,
|
| 268 |
+
basic_block_rorder=0,
|
| 269 |
+
basic_block_lstride=1,
|
| 270 |
+
basic_block_rstride=1,
|
| 271 |
+
output_affine_size=16,
|
| 272 |
+
output_size=32,
|
| 273 |
+
use_softmax=True,
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
inputs = torch.randn(size=(1, 198, 32), dtype=torch.float32)
|
| 277 |
+
|
| 278 |
+
result, _ = fsmn.forward(inputs)
|
| 279 |
+
print(result.shape)
|
| 280 |
+
|
| 281 |
+
return
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
if __name__ == "__main__":
|
| 285 |
+
main()
|
toolbox/torchaudio/models/vad/fsmn_vad/modeling_fsmn_vad.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
https://modelscope.cn/models/iic/speech_fsmn_vad_zh-cn-16k-common-pytorch/summary
|
| 5 |
+
https://huggingface.co/funasr/fsmn-vad
|
| 6 |
+
https://huggingface.co/funasr/fsmn-vad-onnx
|
| 7 |
+
|
| 8 |
+
https://github.com/lovemefan/fsmn-vad
|
| 9 |
+
|
| 10 |
+
https://github.com/modelscope/FunASR/blob/main/funasr/models/fsmn_vad_streaming/encoder.py
|
| 11 |
+
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
if __name__ == "__main__":
|
| 18 |
+
pass
|
toolbox/torchaudio/models/vad/silero_vad/modeling_silero_vad.py
CHANGED
|
@@ -115,9 +115,10 @@ class SileroVadModel(nn.Module):
|
|
| 115 |
nn.Linear(config.hidden_size, 32),
|
| 116 |
nn.ReLU(),
|
| 117 |
nn.Linear(32, 1),
|
| 118 |
-
nn.Sigmoid()
|
| 119 |
)
|
| 120 |
|
|
|
|
|
|
|
| 121 |
def forward(self, signal: torch.Tensor):
|
| 122 |
mags = self.stft.forward(signal)
|
| 123 |
# mags shape: [b, f, t]
|
|
@@ -132,10 +133,11 @@ class SileroVadModel(nn.Module):
|
|
| 132 |
# x shape: [b, t, f]
|
| 133 |
|
| 134 |
x, _ = self.lstm.forward(x)
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
|
|
|
| 139 |
|
| 140 |
|
| 141 |
class SileroVadPretrainedModel(SileroVadModel):
|
|
@@ -190,9 +192,9 @@ def main():
|
|
| 190 |
|
| 191 |
noisy = torch.randn(size=(1, 16000), dtype=torch.float32)
|
| 192 |
|
| 193 |
-
probs = model.forward(noisy)
|
| 194 |
-
print(f"
|
| 195 |
-
print(f"
|
| 196 |
|
| 197 |
return
|
| 198 |
|
|
|
|
| 115 |
nn.Linear(config.hidden_size, 32),
|
| 116 |
nn.ReLU(),
|
| 117 |
nn.Linear(32, 1),
|
|
|
|
| 118 |
)
|
| 119 |
|
| 120 |
+
self.sigmoid = nn.Sigmoid()
|
| 121 |
+
|
| 122 |
def forward(self, signal: torch.Tensor):
|
| 123 |
mags = self.stft.forward(signal)
|
| 124 |
# mags shape: [b, f, t]
|
|
|
|
| 133 |
# x shape: [b, t, f]
|
| 134 |
|
| 135 |
x, _ = self.lstm.forward(x)
|
| 136 |
+
logits = self.classifier.forward(x)
|
| 137 |
+
# logits shape: [b, t, 1]
|
| 138 |
+
probs = self.sigmoid.forward(logits)
|
| 139 |
+
# probs shape: [b, t, 1]
|
| 140 |
+
return logits, probs
|
| 141 |
|
| 142 |
|
| 143 |
class SileroVadPretrainedModel(SileroVadModel):
|
|
|
|
| 192 |
|
| 193 |
noisy = torch.randn(size=(1, 16000), dtype=torch.float32)
|
| 194 |
|
| 195 |
+
logits, probs = model.forward(noisy)
|
| 196 |
+
print(f"logits: {probs}")
|
| 197 |
+
print(f"logits.shape: {logits.shape}")
|
| 198 |
|
| 199 |
return
|
| 200 |
|
toolbox/webrtcvad/vad.py
CHANGED
|
@@ -51,6 +51,24 @@ class WebRTCVad(object):
|
|
| 51 |
self.timestamp_start = 0.0
|
| 52 |
self.timestamp_end = 0.0
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
def signal_to_frames(self, signal: np.ndarray):
|
| 55 |
frames = list()
|
| 56 |
|
|
@@ -138,6 +156,7 @@ class WebRTCVad(object):
|
|
| 138 |
self.timestamp_end = end
|
| 139 |
|
| 140 |
def vad(self, signal: np.ndarray) -> List[list]:
|
|
|
|
| 141 |
segments = self.segments_generator(signal)
|
| 142 |
vad_segments = self.vad_segments_generator(segments)
|
| 143 |
vad_segments = list(vad_segments)
|
|
|
|
| 51 |
self.timestamp_start = 0.0
|
| 52 |
self.timestamp_end = 0.0
|
| 53 |
|
| 54 |
+
def reset(self):
|
| 55 |
+
# frames
|
| 56 |
+
self.frame_length = int(self.sample_rate * (self.frame_duration_ms / 1000.0))
|
| 57 |
+
self.frame_timestamp = 0.0
|
| 58 |
+
self.signal_cache = None
|
| 59 |
+
|
| 60 |
+
# segments
|
| 61 |
+
self.num_padding_frames = int(self.padding_duration_ms / self.frame_duration_ms)
|
| 62 |
+
self.ring_buffer = collections.deque(maxlen=self.num_padding_frames)
|
| 63 |
+
self.triggered = False
|
| 64 |
+
self.voiced_frames: List[Frame] = list()
|
| 65 |
+
self.segments = list()
|
| 66 |
+
|
| 67 |
+
# vad segments
|
| 68 |
+
self.is_first_segment = True
|
| 69 |
+
self.timestamp_start = 0.0
|
| 70 |
+
self.timestamp_end = 0.0
|
| 71 |
+
|
| 72 |
def signal_to_frames(self, signal: np.ndarray):
|
| 73 |
frames = list()
|
| 74 |
|
|
|
|
| 156 |
self.timestamp_end = end
|
| 157 |
|
| 158 |
def vad(self, signal: np.ndarray) -> List[list]:
|
| 159 |
+
# signal dtype: np.int16
|
| 160 |
segments = self.segments_generator(signal)
|
| 161 |
vad_segments = self.vad_segments_generator(segments)
|
| 162 |
vad_segments = list(vad_segments)
|