Spaces:
Running
Running
File size: 8,836 Bytes
a984ba9 7ecbf9d a984ba9 7ecbf9d a984ba9 7ecbf9d a984ba9 7ecbf9d a984ba9 7ecbf9d a984ba9 7ecbf9d a984ba9 7ecbf9d a984ba9 7ecbf9d a984ba9 7ecbf9d a984ba9 7ecbf9d a984ba9 7ecbf9d a984ba9 7ecbf9d a984ba9 7ecbf9d a984ba9 7ecbf9d a984ba9 7ecbf9d a984ba9 7ecbf9d a984ba9 7ecbf9d a984ba9 7ecbf9d a984ba9 7ecbf9d a984ba9 7ecbf9d a984ba9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from datetime import datetime
import json
import os
from pathlib import Path
import sys
import time
from zoneinfo import ZoneInfo # Python 3.9+ 自带,无需安装
pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../"))
import openai
from openai import AzureOpenAI
from project_settings import environment, project_path
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
# default="gpt-4o",
default="gpt-4o-mini",
type=str
)
parser.add_argument(
"--eval_dataset_name",
default="agent-nxcloud-zh-375-choice.jsonl",
type=str
)
parser.add_argument(
"--eval_dataset_dir",
default=(project_path / "data/dataset").as_posix(),
type=str
)
parser.add_argument(
"--eval_data_dir",
default=(project_path / "data/eval_data").as_posix(),
type=str
)
parser.add_argument(
"--client",
default="shenzhen_sase",
type=str
)
parser.add_argument(
"--service",
default="west_us_chatgpt_openai_azure_com",
type=str
)
parser.add_argument(
"--create_time_str",
default="null",
# default="20251209_151045",
type=str
)
parser.add_argument(
"--interval",
default=5,
type=int
)
args = parser.parse_args()
return args
def conversation_to_str(conversation: list):
conversation_str = ""
for turn in conversation:
role = turn["role"]
content = turn["content"]
row_ = f"{role}: {content}\n"
conversation_str += row_
return conversation_str
system_prompt = """
你是一位专业的电话对话分析专家,负责根据客服与客户之间的通话内容判断客户意图类别。
请仔细分析用户提供的完整对话,并严格按照以下规则进行分类:
- **A**:客户**明确同意参加试听课**(如“好啊,安排一下”)。仅询问细节、模糊回应(如“嗯嗯”“好的”)不算。
- **B**:客户**投诉、辱骂、或明确要求停止拨打此类电话**(如“别再打了!”)。仅拒绝试听(如“不用了”)不属于 B。
- **C**:客户表示**当前时刻不方便通话,例如提到“在开车”、“不方便”等**。
- **D**:对话为**语音留言/自动应答**,或包含“留言”“voicemail”“message”“已录音”等关键词,或出现**逐字念出的数字串**(如“九零九五……”)。
- **E**:客服**完成两次独立推销后**,客户**两次都表达了明确拒绝,仅一次不算做E分类**。
- **F**:客户未表达明确意愿,或以上情况均不符合(默认类别)。
**输出要求:**
- 仅输出一个大写字母(A、B、C、D、E 或 F);
- 不要任何解释、标点、空格、换行、JSON、引号或其他字符;
- 输出必须且只能是单个字母。
"""
def main():
args = get_args()
eval_dataset_dir = Path(args.eval_dataset_dir)
eval_dataset_dir.mkdir(parents=True, exist_ok=True)
eval_data_dir = Path(args.eval_data_dir)
eval_data_dir.mkdir(parents=True, exist_ok=True)
if args.create_time_str == "null":
tz = ZoneInfo("Asia/Shanghai")
now = datetime.now(tz)
create_time_str = now.strftime("%Y%m%d_%H%M%S")
# create_time_str = "20250722_173400"
else:
create_time_str = args.create_time_str
eval_dataset = eval_dataset_dir / args.eval_dataset_name
output_file = eval_data_dir / f"azure_openai_nxcloud_choice/azure/{args.model_name}/{args.client}/{args.service}/{create_time_str}/{args.eval_dataset_name}"
output_file.parent.mkdir(parents=True, exist_ok=True)
service_params = environment.get(args.service, dtype=json.loads)
client = AzureOpenAI(
**service_params,
# api_key="Dqt75blRABmhgrwhfcupd1rq44YqNuEgku8FcFFDrEljMq6gltf0JQQJ99BCACYeBjFXJ3w3AAABACOG2njW",
# api_version="2025-01-01-preview",
# azure_endpoint="https://west-us-chatgpt.openai.azure.com"
)
total = 0
total_correct = 0
# finished
finished_idx_set = set()
if os.path.exists(output_file.as_posix()):
with open(output_file.as_posix(), "r", encoding="utf-8") as f:
for row in f:
row = json.loads(row)
idx = row["idx"]
total = row["total"]
total_correct = row["total_correct"]
finished_idx_set.add(idx)
print(f"finished count: {len(finished_idx_set)}")
with open(eval_dataset.as_posix(), "r", encoding="utf-8") as fin, open(output_file.as_posix(), "a+", encoding="utf-8") as fout:
for row in fin:
row = json.loads(row)
idx = row["idx"]
# system_prompt = row["system_prompt"]
conversation = row["conversation"]
examples = row["examples"]
choices = row["choices"]
response = row["response"]
if idx in finished_idx_set:
continue
finished_idx_set.add(idx)
# conversation
conversation_str = conversation_to_str(conversation)
examples_str = ""
for example in examples:
conversation_ = example["conversation"]
outputs = example["outputs"]
output = outputs["output"]
explanation = outputs["explanation"]
examples_str += conversation_to_str(conversation_)
# output_json = {"Explanation": explanation, "output": output}
# output_json_str = json.dumps(output_json, ensure_ascii=False)
# examples_str += f"\nOutput: {output_json_str}\n"
examples_str += f"\nOutput: {output}\n\n"
# print(examples_str)
choices_str = ""
for choice in choices:
condition = choice["condition"]
choice_letter = choice["choice_letter"]
row_ = f"{condition}, output: {choice_letter}\n"
choices_str += row_
# choices_str += "\nRemember to output ONLY the corresponding letter.\nYour output is:"
# choices_str += "\nPlease use only 10-15 words to explain.\nOutput:"
# prompt = f"{system_prompt}\n\n**Output**\n{choices_}\n**Examples**\n{examples_}"
prompt1 = f"{system_prompt}\n\n**Examples**\n{examples_str}"
prompt2 = f"**Conversation**\n{conversation_str}\n\nOutput:"
# print(prompt1)
# print(prompt2)
messages = list()
messages.append(
{"role": "system", "content": prompt1},
)
messages.append(
{"role": "user", "content": prompt2},
)
# print(f"messages: {json.dumps(messages, ensure_ascii=False, indent=4)}")
try:
time.sleep(args.interval)
print(f"sleep: {args.interval}")
time_begin = time.time()
llm_response = client.chat.completions.create(
model=args.model_name,
messages=messages,
stream=False,
max_tokens=1,
top_p=0.95,
temperature=0.6,
logit_bias={
32: 100,
33: 100,
34: 100,
35: 100,
36: 100,
37: 100,
38: 100,
39: 100,
}
)
time_cost = time.time() - time_begin
print(f"time_cost: {time_cost}")
except openai.BadRequestError as e:
print(f"request failed, error type: {type(e)}, error text: {str(e)}")
continue
prediction = llm_response.choices[0].message.content
correct = 1 if prediction == response else 0
total += 1
total_correct += correct
score = total_correct / total
row_ = {
"idx": idx,
"messages": messages,
"response": response,
"prediction": prediction,
"correct": correct,
"total": total,
"total_correct": total_correct,
"score": score,
"time_cost": time_cost,
}
row_ = json.dumps(row_, ensure_ascii=False)
fout.write(f"{row_}\n")
fout.flush()
return
if __name__ == "__main__":
main()
|