Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +88 -0
- data/benchmark_33_bctn_so_lieu_5context.json +0 -0
- requirements.txt +0 -0
app.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import json
|
| 3 |
+
from llmlingua import PromptCompressor
|
| 4 |
+
import tiktoken
|
| 5 |
+
|
| 6 |
+
compressors = {
|
| 7 |
+
"xlm-roberta": PromptCompressor(
|
| 8 |
+
#model_name="microsoft/llmlingua-2-xlm-roberta-large-meetingbank",
|
| 9 |
+
model_name='qminh369/token-classification-llmlingua2-xlm-roberta-42k_merge_1_epoch',
|
| 10 |
+
use_llmlingua2=True,
|
| 11 |
+
device_map="cpu"
|
| 12 |
+
)
|
| 13 |
+
}
|
| 14 |
+
|
| 15 |
+
tokenizer = tiktoken.encoding_for_model("gpt-4")
|
| 16 |
+
|
| 17 |
+
with open('data/benchmark_33_bctn_so_lieu_5context.json', 'r') as f:
|
| 18 |
+
examples = json.load(f)
|
| 19 |
+
|
| 20 |
+
def compress(original_prompt, compression_rate, base_model="xlm-roberta-large", force_tokens=['\n'], chunk_end_tokens=['.', '\n']):
|
| 21 |
+
if '\\n' in force_tokens:
|
| 22 |
+
idx = force_tokens.index('\\n')
|
| 23 |
+
force_tokens[idx] = '\n'
|
| 24 |
+
|
| 25 |
+
compressor = compressors.get(base_model, compressors["mbert-base"])
|
| 26 |
+
results = compressor.compress_prompt_llmlingua2(
|
| 27 |
+
original_prompt,
|
| 28 |
+
rate=compression_rate,
|
| 29 |
+
force_tokens=force_tokens,
|
| 30 |
+
chunk_end_tokens=chunk_end_tokens,
|
| 31 |
+
return_word_label=True,
|
| 32 |
+
drop_consecutive=True
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
compressed_prompt = results["compressed_prompt"]
|
| 36 |
+
n_word_compressed = len(tokenizer.encode(compressed_prompt))
|
| 37 |
+
|
| 38 |
+
word_sep = "\t\t|\t\t"
|
| 39 |
+
label_sep = " "
|
| 40 |
+
lines = results["fn_labeled_original_prompt"].split(word_sep)
|
| 41 |
+
preserved_tokens = []
|
| 42 |
+
for line in lines:
|
| 43 |
+
word, label = line.split(label_sep)
|
| 44 |
+
preserved_tokens.append((word, '+') if label == '1' else (word, None))
|
| 45 |
+
|
| 46 |
+
return compressed_prompt, preserved_tokens, n_word_compressed
|
| 47 |
+
|
| 48 |
+
title = "LLMLingua-2"
|
| 49 |
+
|
| 50 |
+
header = """# LLMLingua-2
|
| 51 |
+
"""
|
| 52 |
+
|
| 53 |
+
theme = "soft"
|
| 54 |
+
css = """#anno-img .mask {opacity: 0.5; transition: all 0.2s ease-in-out;}
|
| 55 |
+
#anno-img .mask.active {opacity: 0.7}"""
|
| 56 |
+
|
| 57 |
+
original_prompt_text = """
|
| 58 |
+
"""
|
| 59 |
+
|
| 60 |
+
with gr.Blocks(title=title, css=css) as app:
|
| 61 |
+
gr.Markdown(header)
|
| 62 |
+
with gr.Row():
|
| 63 |
+
with gr.Column(scale=3):
|
| 64 |
+
original_prompt = gr.Textbox(value=original_prompt_text, label="Original Prompt", lines=10, max_lines=10, interactive=True)
|
| 65 |
+
compressed_prompt = gr.Textbox(value='', label="Compressed Prompt", lines=10, max_lines=10, interactive=False)
|
| 66 |
+
|
| 67 |
+
with gr.Column(scale=1):
|
| 68 |
+
base_model = gr.Radio(["xlm-roberta"], label="Base Model", value="xlm-roberta", interactive=True)
|
| 69 |
+
force_tokens = gr.Dropdown(['\\n', '.', '!', '?', ','],
|
| 70 |
+
label="Tokens to Preserve",
|
| 71 |
+
value=['\\n', '.', '!', '?', ','],
|
| 72 |
+
multiselect=True,
|
| 73 |
+
interactive=True)
|
| 74 |
+
compression_rate = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.7, label="Compression rate", info="after compr. / befor compr.", interactive=True)
|
| 75 |
+
n_word_original = gr.Textbox(lines=1, label="Original (GPT-4 Tokens)", interactive=False, value=len(tokenizer.encode(original_prompt_text)))
|
| 76 |
+
n_word_compressed = gr.Textbox(lines=1, label="Compressed (GPT-4 Tokens)", interactive=False)
|
| 77 |
+
button = gr.Button("⚡Click to Compress")
|
| 78 |
+
with gr.Accordion(label="Compression Details", open=False):
|
| 79 |
+
diff_text = gr.HighlightedText(label="Diff", combine_adjacent=False, show_legend=True, color_map={"+": "green"})
|
| 80 |
+
|
| 81 |
+
original_prompt.change(lambda x: len(tokenizer.encode(x)), inputs=[original_prompt], outputs=[n_word_original])
|
| 82 |
+
original_prompt.change(lambda x: ("", "", []), inputs=[original_prompt], outputs=[compressed_prompt, n_word_compressed, diff_text])
|
| 83 |
+
|
| 84 |
+
button.click(fn=compress,
|
| 85 |
+
inputs=[original_prompt, compression_rate, base_model, force_tokens],
|
| 86 |
+
outputs=[compressed_prompt, diff_text, n_word_compressed])
|
| 87 |
+
|
| 88 |
+
app.queue(max_size=10, api_open=False).launch(show_api=False)
|
data/benchmark_33_bctn_so_lieu_5context.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
ADDED
|
File without changes
|