Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import spaces | |
| import shutil | |
| import subprocess | |
| import sys | |
| import copy | |
| import random | |
| import tempfile | |
| import warnings | |
| import time | |
| import gc | |
| import uuid | |
| from tqdm import tqdm | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| from torch.nn import functional as F | |
| from PIL import Image | |
| import gradio as gr | |
| from diffusers import ( | |
| FlowMatchEulerDiscreteScheduler, | |
| SASolverScheduler, | |
| DEISMultistepScheduler, | |
| DPMSolverMultistepInverseScheduler, | |
| UniPCMultistepScheduler, | |
| DPMSolverMultistepScheduler, | |
| DPMSolverSinglestepScheduler, | |
| ) | |
| from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline | |
| from diffusers.utils.export_utils import export_to_video | |
| from torchao.quantization import quantize_, Float8DynamicActivationFloat8WeightConfig, Int8WeightOnlyConfig | |
| import aoti | |
| os.environ["TOKENIZERS_PARALLELISM"] = "true" | |
| warnings.filterwarnings("ignore") | |
| IS_ZERO_GPU = bool(os.getenv("SPACES_ZERO_GPU")) | |
| if IS_ZERO_GPU: | |
| print("Loading...") | |
| subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True) | |
| # --- FRAME EXTRACTION JS & LOGIC --- | |
| # JS to grab timestamp from the output video | |
| get_timestamp_js = """ | |
| function() { | |
| // Select the video element specifically inside the component with id 'generated-video' | |
| const video = document.querySelector('#generated-video video'); | |
| if (video) { | |
| console.log("Video found! Time: " + video.currentTime); | |
| return video.currentTime; | |
| } else { | |
| console.log("No video element found."); | |
| return 0; | |
| } | |
| } | |
| """ | |
| def extract_frame(video_path, timestamp): | |
| # Safety check: if no video is present | |
| if not video_path: | |
| return None | |
| print(f"Extracting frame at timestamp: {timestamp}") | |
| cap = cv2.VideoCapture(video_path) | |
| if not cap.isOpened(): | |
| return None | |
| # Calculate frame number | |
| fps = cap.get(cv2.CAP_PROP_FPS) | |
| target_frame_num = int(float(timestamp) * fps) | |
| # Cap total frames to prevent errors at the very end of video | |
| total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| if target_frame_num >= total_frames: | |
| target_frame_num = total_frames - 1 | |
| # Set position | |
| cap.set(cv2.CAP_PROP_POS_FRAMES, target_frame_num) | |
| ret, frame = cap.read() | |
| cap.release() | |
| if ret: | |
| # Convert from BGR (OpenCV) to RGB (Gradio) | |
| # Gradio Image component handles Numpy array -> PIL conversion automatically | |
| return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
| return None | |
| # --- END FRAME EXTRACTION LOGIC --- | |
| def clear_vram(): | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| # RIFE | |
| if not os.path.exists("RIFEv4.26_0921.zip"): | |
| print("Downloading RIFE Model...") | |
| subprocess.run([ | |
| "wget", "-q", | |
| "https://huggingface.co/r3gm/RIFE/resolve/main/RIFEv4.26_0921.zip", | |
| "-O", "RIFEv4.26_0921.zip" | |
| ], check=True) | |
| subprocess.run(["unzip", "-o", "RIFEv4.26_0921.zip"], check=True) | |
| # sys.path.append(os.getcwd()) | |
| from train_log.RIFE_HDv3 import Model | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| rife_model = Model() | |
| rife_model.load_model("train_log", -1) | |
| rife_model.eval() | |
| def interpolate_bits(frames_np, multiplier=2, scale=1.0): | |
| """ | |
| Interpolation maintaining Numpy Float 0-1 format. | |
| Args: | |
| frames_np: Numpy Array (Time, Height, Width, Channels) - Float32 [0.0, 1.0] | |
| multiplier: int (2, 4, 8) | |
| Returns: | |
| List of Numpy Arrays (Height, Width, Channels) - Float32 [0.0, 1.0] | |
| """ | |
| # Handle input shape | |
| if isinstance(frames_np, list): | |
| # Convert list of arrays to one big array for easier shape handling if needed, | |
| # but here we just grab dims from first frame | |
| T = len(frames_np) | |
| H, W, C = frames_np[0].shape | |
| else: | |
| T, H, W, C = frames_np.shape | |
| # 1. No Interpolation Case | |
| if multiplier < 2: | |
| # Just convert 4D array to list of 3D arrays | |
| if isinstance(frames_np, np.ndarray): | |
| return list(frames_np) | |
| return frames_np | |
| n_interp = multiplier - 1 | |
| # Pre-calc padding for RIFE (requires dimensions divisible by 32/scale) | |
| tmp = max(128, int(128 / scale)) | |
| ph = ((H - 1) // tmp + 1) * tmp | |
| pw = ((W - 1) // tmp + 1) * tmp | |
| padding = (0, pw - W, 0, ph - H) | |
| # Helper: Numpy (H, W, C) Float -> Tensor (1, C, H, W) Half | |
| def to_tensor(frame_np): | |
| # frame_np is float32 0-1 | |
| t = torch.from_numpy(frame_np).to(device) | |
| # HWC -> CHW | |
| t = t.permute(2, 0, 1).unsqueeze(0) | |
| return F.pad(t, padding).half() | |
| # Helper: Tensor (1, C, H, W) Half -> Numpy (H, W, C) Float | |
| def from_tensor(tensor): | |
| # Crop padding | |
| t = tensor[0, :, :H, :W] | |
| # CHW -> HWC | |
| t = t.permute(1, 2, 0) | |
| # Keep as float32, range 0-1 | |
| return t.float().cpu().numpy() | |
| def make_inference(I0, I1, n): | |
| if rife_model.version >= 3.9: | |
| res = [] | |
| for i in range(n): | |
| res.append(rife_model.inference(I0, I1, (i+1) * 1. / (n+1), scale)) | |
| return res | |
| else: | |
| middle = rife_model.inference(I0, I1, scale) | |
| if n == 1: | |
| return [middle] | |
| first_half = make_inference(I0, middle, n=n//2) | |
| second_half = make_inference(middle, I1, n=n//2) | |
| if n % 2: | |
| return [*first_half, middle, *second_half] | |
| else: | |
| return [*first_half, *second_half] | |
| output_frames = [] | |
| # Process Frames | |
| # Load first frame into GPU | |
| I1 = to_tensor(frames_np[0]) | |
| total_steps = T - 1 | |
| with tqdm(total=total_steps, desc="Interpolating", unit="frame") as pbar: | |
| for i in range(total_steps): | |
| I0 = I1 | |
| # Add original frame to output | |
| output_frames.append(from_tensor(I0)) | |
| # Load next frame | |
| I1 = to_tensor(frames_np[i+1]) | |
| # Generate intermediate frames | |
| mid_tensors = make_inference(I0, I1, n_interp) | |
| # Append intermediate frames | |
| for mid in mid_tensors: | |
| output_frames.append(from_tensor(mid)) | |
| if (i + 1) % 50 == 0: | |
| pbar.update(50) | |
| pbar.update(total_steps % 50) | |
| # Add the very last frame | |
| output_frames.append(from_tensor(I1)) | |
| # Cleanup | |
| del I0, I1, mid_tensors | |
| torch.cuda.empty_cache() | |
| return output_frames | |
| # WAN | |
| MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers" | |
| CACHE_DIR = os.path.expanduser("~/.cache/huggingface/") | |
| MAX_DIM = 832 | |
| MIN_DIM = 480 | |
| SQUARE_DIM = 640 | |
| MULTIPLE_OF = 16 | |
| MAX_SEED = np.iinfo(np.int32).max | |
| FIXED_FPS = 16 | |
| MIN_FRAMES_MODEL = 8 | |
| MAX_FRAMES_MODEL = 160 | |
| MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1) | |
| MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1) | |
| SCHEDULER_MAP = { | |
| "FlowMatchEulerDiscrete": FlowMatchEulerDiscreteScheduler, | |
| "SASolver": SASolverScheduler, | |
| "DEISMultistep": DEISMultistepScheduler, | |
| "DPMSolverMultistepInverse": DPMSolverMultistepInverseScheduler, | |
| "UniPCMultistep": UniPCMultistepScheduler, | |
| "DPMSolverMultistep": DPMSolverMultistepScheduler, | |
| "DPMSolverSinglestep": DPMSolverSinglestepScheduler, | |
| } | |
| pipe = WanImageToVideoPipeline.from_pretrained( | |
| "TestOrganizationPleaseIgnore/WAMU_v1_WAN2.2_I2V_LIGHTNING", | |
| torch_dtype=torch.bfloat16, | |
| ).to('cuda') | |
| original_scheduler = copy.deepcopy(pipe.scheduler) | |
| if os.path.exists(CACHE_DIR): | |
| shutil.rmtree(CACHE_DIR) | |
| print("Deleted Hugging Face cache.") | |
| else: | |
| print("No hub cache found.") | |
| quantize_(pipe.text_encoder, Int8WeightOnlyConfig()) | |
| quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig()) | |
| quantize_(pipe.transformer_2, Float8DynamicActivationFloat8WeightConfig()) | |
| aoti.aoti_blocks_load(pipe.transformer, 'zerogpu-aoti/Wan2', variant='fp8da') | |
| aoti.aoti_blocks_load(pipe.transformer_2, 'zerogpu-aoti/Wan2', variant='fp8da') | |
| # pipe.vae.enable_slicing() | |
| # pipe.vae.enable_tiling() | |
| default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation" | |
| default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走" | |
| def resize_image(image: Image.Image) -> Image.Image: | |
| width, height = image.size | |
| if width == height: | |
| return image.resize((SQUARE_DIM, SQUARE_DIM), Image.LANCZOS) | |
| aspect_ratio = width / height | |
| MAX_ASPECT_RATIO = MAX_DIM / MIN_DIM | |
| MIN_ASPECT_RATIO = MIN_DIM / MAX_DIM | |
| image_to_resize = image | |
| if aspect_ratio > MAX_ASPECT_RATIO: | |
| target_w, target_h = MAX_DIM, MIN_DIM | |
| crop_width = int(round(height * MAX_ASPECT_RATIO)) | |
| left = (width - crop_width) // 2 | |
| image_to_resize = image.crop((left, 0, left + crop_width, height)) | |
| elif aspect_ratio < MIN_ASPECT_RATIO: | |
| target_w, target_h = MIN_DIM, MAX_DIM | |
| crop_height = int(round(width / MIN_ASPECT_RATIO)) | |
| top = (height - crop_height) // 2 | |
| image_to_resize = image.crop((0, top, width, top + crop_height)) | |
| else: | |
| if width > height: | |
| target_w = MAX_DIM | |
| target_h = int(round(target_w / aspect_ratio)) | |
| else: | |
| target_h = MAX_DIM | |
| target_w = int(round(target_h * aspect_ratio)) | |
| final_w = round(target_w / MULTIPLE_OF) * MULTIPLE_OF | |
| final_h = round(target_h / MULTIPLE_OF) * MULTIPLE_OF | |
| final_w = max(MIN_DIM, min(MAX_DIM, final_w)) | |
| final_h = max(MIN_DIM, min(MAX_DIM, final_h)) | |
| return image_to_resize.resize((final_w, final_h), Image.LANCZOS) | |
| def resize_and_crop_to_match(target_image, reference_image): | |
| ref_width, ref_height = reference_image.size | |
| target_width, target_height = target_image.size | |
| scale = max(ref_width / target_width, ref_height / target_height) | |
| new_width, new_height = int(target_width * scale), int(target_height * scale) | |
| resized = target_image.resize((new_width, new_height), Image.Resampling.LANCZOS) | |
| left, top = (new_width - ref_width) // 2, (new_height - ref_height) // 2 | |
| return resized.crop((left, top, left + ref_width, top + ref_height)) | |
| def get_num_frames(duration_seconds: float): | |
| return 1 + int(np.clip( | |
| int(round(duration_seconds * FIXED_FPS)), | |
| MIN_FRAMES_MODEL, | |
| MAX_FRAMES_MODEL, | |
| )) | |
| def get_inference_duration( | |
| resized_image, | |
| processed_last_image, | |
| prompt, | |
| steps, | |
| negative_prompt, | |
| num_frames, | |
| guidance_scale, | |
| guidance_scale_2, | |
| current_seed, | |
| scheduler_name, | |
| flow_shift, | |
| frame_multiplier, | |
| quality, | |
| duration_seconds, | |
| progress | |
| ): | |
| BASE_FRAMES_HEIGHT_WIDTH = 81 * 832 * 624 | |
| BASE_STEP_DURATION = 15 | |
| width, height = resized_image.size | |
| factor = num_frames * width * height / BASE_FRAMES_HEIGHT_WIDTH | |
| step_duration = BASE_STEP_DURATION * factor ** 1.5 | |
| gen_time = int(steps) * step_duration | |
| print(gen_time) | |
| if guidance_scale > 1: | |
| gen_time = gen_time * 1.8 | |
| frame_factor = frame_multiplier // FIXED_FPS | |
| if frame_factor > 1: | |
| total_out_frames = (num_frames * frame_factor) - num_frames | |
| inter_time = (total_out_frames * 0.02) | |
| print(inter_time) | |
| gen_time += inter_time | |
| print("Time GPU", gen_time + 10) | |
| return 10 + gen_time | |
| def run_inference( | |
| resized_image, | |
| processed_last_image, | |
| prompt, | |
| steps, | |
| negative_prompt, | |
| num_frames, | |
| guidance_scale, | |
| guidance_scale_2, | |
| current_seed, | |
| scheduler_name, | |
| flow_shift, | |
| frame_multiplier, | |
| quality, | |
| duration_seconds, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| scheduler_class = SCHEDULER_MAP.get(scheduler_name) | |
| if scheduler_class.__name__ != pipe.scheduler.config._class_name or flow_shift != pipe.scheduler.config.get("flow_shift", "shift"): | |
| config = copy.deepcopy(original_scheduler.config) | |
| if scheduler_class == FlowMatchEulerDiscreteScheduler: | |
| config['shift'] = flow_shift | |
| else: | |
| config['flow_shift'] = flow_shift | |
| pipe.scheduler = scheduler_class.from_config(config) | |
| clear_vram() | |
| task_name = str(uuid.uuid4())[:8] | |
| print(f"Generating {num_frames} frames, task: {task_name}, {duration_seconds}, {resized_image.size}") | |
| start = time.time() | |
| result = pipe( | |
| image=resized_image, | |
| last_image=processed_last_image, | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| height=resized_image.height, | |
| width=resized_image.width, | |
| num_frames=num_frames, | |
| guidance_scale=float(guidance_scale), | |
| guidance_scale_2=float(guidance_scale_2), | |
| num_inference_steps=int(steps), | |
| generator=torch.Generator(device="cuda").manual_seed(current_seed), | |
| output_type="np" | |
| ) | |
| print("gen time passed:", time.time() - start) | |
| raw_frames_np = result.frames[0] # Returns (T, H, W, C) float32 | |
| pipe.scheduler = original_scheduler | |
| frame_factor = frame_multiplier // FIXED_FPS | |
| if frame_factor > 1: | |
| start = time.time() | |
| print(f"Processing frames (RIFE Multiplier: {frame_factor}x)...") | |
| rife_model.device() | |
| rife_model.flownet = rife_model.flownet.half() | |
| final_frames = interpolate_bits(raw_frames_np, multiplier=int(frame_factor)) | |
| print("Interpolation time passed:", time.time() - start) | |
| else: | |
| final_frames = list(raw_frames_np) | |
| final_fps = FIXED_FPS * int(frame_factor) | |
| with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: | |
| video_path = tmpfile.name | |
| start = time.time() | |
| with tqdm(total=3, desc="Rendering Media", unit="clip") as pbar: | |
| pbar.update(2) | |
| export_to_video(final_frames, video_path, fps=final_fps, quality=quality) | |
| pbar.update(1) | |
| print(f"Export time passed, {final_fps} FPS:", time.time() - start) | |
| return video_path, task_name | |
| def generate_video( | |
| input_image, | |
| last_image, | |
| prompt, | |
| steps=4, | |
| negative_prompt=default_negative_prompt, | |
| duration_seconds=MAX_DURATION, | |
| guidance_scale=1, | |
| guidance_scale_2=1, | |
| seed=42, | |
| randomize_seed=False, | |
| quality=5, | |
| scheduler="UniPCMultistep", | |
| flow_shift=6.0, | |
| frame_multiplier=16, | |
| video_component=True, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| """ | |
| Generate a video from an input image using the Wan 2.2 14B I2V model with Lightning LoRA. | |
| This function takes an input image and generates a video animation based on the provided | |
| prompt and parameters. It uses an FP8 qunatized Wan 2.2 14B Image-to-Video model in with Lightning LoRA | |
| for fast generation in 4-8 steps. | |
| Args: | |
| input_image (PIL.Image): The input image to animate. Will be resized to target dimensions. | |
| last_image (PIL.Image, optional): The optional last image for the video. | |
| prompt (str): Text prompt describing the desired animation or motion. | |
| steps (int, optional): Number of inference steps. More steps = higher quality but slower. | |
| Defaults to 4. Range: 1-30. | |
| negative_prompt (str, optional): Negative prompt to avoid unwanted elements. | |
| Defaults to default_negative_prompt (contains unwanted visual artifacts). | |
| duration_seconds (float, optional): Duration of the generated video in seconds. | |
| Defaults to 2. Clamped between MIN_FRAMES_MODEL/FIXED_FPS and MAX_FRAMES_MODEL/FIXED_FPS. | |
| guidance_scale (float, optional): Controls adherence to the prompt. Higher values = more adherence. | |
| Defaults to 1.0. Range: 0.0-20.0. | |
| guidance_scale_2 (float, optional): Controls adherence to the prompt. Higher values = more adherence. | |
| Defaults to 1.0. Range: 0.0-20.0. | |
| seed (int, optional): Random seed for reproducible results. Defaults to 42. | |
| Range: 0 to MAX_SEED (2147483647). | |
| randomize_seed (bool, optional): Whether to use a random seed instead of the provided seed. | |
| Defaults to False. | |
| quality (float, optional): Video output quality. Default is 5. Uses variable bit rate. | |
| Highest quality is 10, lowest is 1. | |
| scheduler (str, optional): The name of the scheduler to use for inference. Defaults to "UniPCMultistep". | |
| flow_shift (float, optional): The flow shift value for compatible schedulers. Defaults to 6.0. | |
| frame_multiplier (int, optional): The int value for fps enhancer | |
| video_component(bool, optional): Show video player in output. | |
| Defaults to True. | |
| progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True). | |
| Returns: | |
| tuple: A tuple containing: | |
| - video_path (str): Path for the video component. | |
| - video_path (str): Path for the file download component. Attempt to avoid reconversion in video component. | |
| - current_seed (int): The seed used for generation. | |
| Raises: | |
| gr.Error: If input_image is None (no image uploaded). | |
| Note: | |
| - Frame count is calculated as duration_seconds * FIXED_FPS (24) | |
| - Output dimensions are adjusted to be multiples of MOD_VALUE (32) | |
| - The function uses GPU acceleration via the @spaces.GPU decorator | |
| - Generation time varies based on steps and duration (see get_duration function) | |
| """ | |
| if input_image is None: | |
| raise gr.Error("Please upload an input image.") | |
| num_frames = get_num_frames(duration_seconds) | |
| current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) | |
| resized_image = resize_image(input_image) | |
| processed_last_image = None | |
| if last_image: | |
| processed_last_image = resize_and_crop_to_match(last_image, resized_image) | |
| video_path, task_n = run_inference( | |
| resized_image, | |
| processed_last_image, | |
| prompt, | |
| steps, | |
| negative_prompt, | |
| num_frames, | |
| guidance_scale, | |
| guidance_scale_2, | |
| current_seed, | |
| scheduler, | |
| flow_shift, | |
| frame_multiplier, | |
| quality, | |
| duration_seconds, | |
| progress, | |
| ) | |
| print(f"GPU complete: {task_n}") | |
| return (video_path if video_component else None), video_path, current_seed | |
| CSS = """ | |
| #hidden-timestamp { | |
| opacity: 0; | |
| height: 0px; | |
| width: 0px; | |
| margin: 0px; | |
| padding: 0px; | |
| overflow: hidden; | |
| position: absolute; | |
| pointer-events: none; | |
| } | |
| """ | |
| with gr.Blocks(delete_cache=(3600, 10800)) as demo: | |
| gr.Markdown("## WAMU - Wan 2.2 I2V (14B) 🐢") | |
| gr.Markdown("#### ℹ️ **A Note on Performance:** This version prioritizes a straightforward setup over maximum speed, so performance may vary.") | |
| gr.Markdown("Run Wan 2.2 in just 4-8 steps, fp8 quantization & AoT compilation - compatible with 🧨 diffusers and ZeroGPU") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image_component = gr.Image(type="pil", label="Input Image", sources=["upload", "clipboard"]) | |
| prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v) | |
| duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=3.5, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.") | |
| frame_multi = gr.Dropdown( | |
| choices=[FIXED_FPS, FIXED_FPS*2, FIXED_FPS*4, FIXED_FPS*8], | |
| value=FIXED_FPS, | |
| label="Video Fluidity (Frames per Second)", | |
| info="Extra frames will be generated using flow estimation, which estimates motion between frames to make the video smoother." | |
| ) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| last_image_component = gr.Image(type="pil", label="Last Image (Optional)", sources=["upload", "clipboard"]) | |
| negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, info="Used if any Guidance Scale > 1.", lines=3) | |
| quality_slider = gr.Slider(minimum=1, maximum=10, step=1, value=6, label="Video Quality", info="If set to 10, the generated video may be too large and won't play in the Gradio preview.") | |
| seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True) | |
| randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True) | |
| steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps") | |
| guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage", info="Values above 1 increase GPU usage and may take longer to process.") | |
| guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale 2 - low noise stage") | |
| scheduler_dropdown = gr.Dropdown( | |
| label="Scheduler", | |
| choices=list(SCHEDULER_MAP.keys()), | |
| value="UniPCMultistep", | |
| info="Select a custom scheduler." | |
| ) | |
| flow_shift_slider = gr.Slider(minimum=0.5, maximum=15.0, step=0.1, value=3.0, label="Flow Shift") | |
| play_result_video = gr.Checkbox(label="Display result", value=True, interactive=True) | |
| org_name = "TestOrganizationPleaseIgnore" | |
| gr.Markdown(f"[ZeroGPU help, tips and troubleshooting](https://huggingface.co/datasets/{org_name}/help/blob/main/gpu_help.md)") | |
| generate_button = gr.Button("Generate Video", variant="primary") | |
| with gr.Column(): | |
| # ASSIGNED elem_id="generated-video" so JS can find it | |
| video_output = gr.Video(label="Generated Video", autoplay=True, sources=["upload"], buttons=["download", "share"], interactive=True, elem_id="generated-video") | |
| # --- Frame Grabbing UI --- | |
| with gr.Row(): | |
| grab_frame_btn = gr.Button("📸 Use Current Frame as Input", variant="secondary") | |
| timestamp_box = gr.Number(value=0, label="Timestamp", visible=True, elem_id="hidden-timestamp") | |
| # ------------------------- | |
| file_output = gr.File(label="Download Video") | |
| ui_inputs = [ | |
| input_image_component, last_image_component, prompt_input, steps_slider, | |
| negative_prompt_input, duration_seconds_input, | |
| guidance_scale_input, guidance_scale_2_input, seed_input, randomize_seed_checkbox, | |
| quality_slider, scheduler_dropdown, flow_shift_slider, frame_multi, | |
| play_result_video | |
| ] | |
| generate_button.click( | |
| fn=generate_video, | |
| inputs=ui_inputs, | |
| outputs=[video_output, file_output, seed_input] | |
| ) | |
| # --- Frame Grabbing Events --- | |
| # 1. Click button -> JS runs -> puts time in hidden number box | |
| grab_frame_btn.click( | |
| fn=None, | |
| inputs=None, | |
| outputs=[timestamp_box], | |
| js=get_timestamp_js | |
| ) | |
| # 2. Hidden number box changes -> Python runs -> puts frame in Input Image | |
| timestamp_box.change( | |
| fn=extract_frame, | |
| inputs=[video_output, timestamp_box], | |
| outputs=[input_image_component] | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue().launch( | |
| mcp_server=True, | |
| css=CSS, | |
| show_error=True, | |
| ) |