r3gm's picture
Update app.py
a7b0a4c verified
import os
import spaces
import shutil
import subprocess
import sys
import copy
import random
import tempfile
import warnings
import time
import gc
import uuid
from tqdm import tqdm
import cv2
import numpy as np
import torch
from torch.nn import functional as F
from PIL import Image
import gradio as gr
from diffusers import (
FlowMatchEulerDiscreteScheduler,
SASolverScheduler,
DEISMultistepScheduler,
DPMSolverMultistepInverseScheduler,
UniPCMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
)
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.utils.export_utils import export_to_video
from torchao.quantization import quantize_, Float8DynamicActivationFloat8WeightConfig, Int8WeightOnlyConfig
import aoti
os.environ["TOKENIZERS_PARALLELISM"] = "true"
warnings.filterwarnings("ignore")
IS_ZERO_GPU = bool(os.getenv("SPACES_ZERO_GPU"))
if IS_ZERO_GPU:
print("Loading...")
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
# --- FRAME EXTRACTION JS & LOGIC ---
# JS to grab timestamp from the output video
get_timestamp_js = """
function() {
// Select the video element specifically inside the component with id 'generated-video'
const video = document.querySelector('#generated-video video');
if (video) {
console.log("Video found! Time: " + video.currentTime);
return video.currentTime;
} else {
console.log("No video element found.");
return 0;
}
}
"""
def extract_frame(video_path, timestamp):
# Safety check: if no video is present
if not video_path:
return None
print(f"Extracting frame at timestamp: {timestamp}")
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return None
# Calculate frame number
fps = cap.get(cv2.CAP_PROP_FPS)
target_frame_num = int(float(timestamp) * fps)
# Cap total frames to prevent errors at the very end of video
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if target_frame_num >= total_frames:
target_frame_num = total_frames - 1
# Set position
cap.set(cv2.CAP_PROP_POS_FRAMES, target_frame_num)
ret, frame = cap.read()
cap.release()
if ret:
# Convert from BGR (OpenCV) to RGB (Gradio)
# Gradio Image component handles Numpy array -> PIL conversion automatically
return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return None
# --- END FRAME EXTRACTION LOGIC ---
def clear_vram():
gc.collect()
torch.cuda.empty_cache()
# RIFE
if not os.path.exists("RIFEv4.26_0921.zip"):
print("Downloading RIFE Model...")
subprocess.run([
"wget", "-q",
"https://huggingface.co/r3gm/RIFE/resolve/main/RIFEv4.26_0921.zip",
"-O", "RIFEv4.26_0921.zip"
], check=True)
subprocess.run(["unzip", "-o", "RIFEv4.26_0921.zip"], check=True)
# sys.path.append(os.getcwd())
from train_log.RIFE_HDv3 import Model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
rife_model = Model()
rife_model.load_model("train_log", -1)
rife_model.eval()
@torch.no_grad()
def interpolate_bits(frames_np, multiplier=2, scale=1.0):
"""
Interpolation maintaining Numpy Float 0-1 format.
Args:
frames_np: Numpy Array (Time, Height, Width, Channels) - Float32 [0.0, 1.0]
multiplier: int (2, 4, 8)
Returns:
List of Numpy Arrays (Height, Width, Channels) - Float32 [0.0, 1.0]
"""
# Handle input shape
if isinstance(frames_np, list):
# Convert list of arrays to one big array for easier shape handling if needed,
# but here we just grab dims from first frame
T = len(frames_np)
H, W, C = frames_np[0].shape
else:
T, H, W, C = frames_np.shape
# 1. No Interpolation Case
if multiplier < 2:
# Just convert 4D array to list of 3D arrays
if isinstance(frames_np, np.ndarray):
return list(frames_np)
return frames_np
n_interp = multiplier - 1
# Pre-calc padding for RIFE (requires dimensions divisible by 32/scale)
tmp = max(128, int(128 / scale))
ph = ((H - 1) // tmp + 1) * tmp
pw = ((W - 1) // tmp + 1) * tmp
padding = (0, pw - W, 0, ph - H)
# Helper: Numpy (H, W, C) Float -> Tensor (1, C, H, W) Half
def to_tensor(frame_np):
# frame_np is float32 0-1
t = torch.from_numpy(frame_np).to(device)
# HWC -> CHW
t = t.permute(2, 0, 1).unsqueeze(0)
return F.pad(t, padding).half()
# Helper: Tensor (1, C, H, W) Half -> Numpy (H, W, C) Float
def from_tensor(tensor):
# Crop padding
t = tensor[0, :, :H, :W]
# CHW -> HWC
t = t.permute(1, 2, 0)
# Keep as float32, range 0-1
return t.float().cpu().numpy()
def make_inference(I0, I1, n):
if rife_model.version >= 3.9:
res = []
for i in range(n):
res.append(rife_model.inference(I0, I1, (i+1) * 1. / (n+1), scale))
return res
else:
middle = rife_model.inference(I0, I1, scale)
if n == 1:
return [middle]
first_half = make_inference(I0, middle, n=n//2)
second_half = make_inference(middle, I1, n=n//2)
if n % 2:
return [*first_half, middle, *second_half]
else:
return [*first_half, *second_half]
output_frames = []
# Process Frames
# Load first frame into GPU
I1 = to_tensor(frames_np[0])
total_steps = T - 1
with tqdm(total=total_steps, desc="Interpolating", unit="frame") as pbar:
for i in range(total_steps):
I0 = I1
# Add original frame to output
output_frames.append(from_tensor(I0))
# Load next frame
I1 = to_tensor(frames_np[i+1])
# Generate intermediate frames
mid_tensors = make_inference(I0, I1, n_interp)
# Append intermediate frames
for mid in mid_tensors:
output_frames.append(from_tensor(mid))
if (i + 1) % 50 == 0:
pbar.update(50)
pbar.update(total_steps % 50)
# Add the very last frame
output_frames.append(from_tensor(I1))
# Cleanup
del I0, I1, mid_tensors
torch.cuda.empty_cache()
return output_frames
# WAN
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
CACHE_DIR = os.path.expanduser("~/.cache/huggingface/")
MAX_DIM = 832
MIN_DIM = 480
SQUARE_DIM = 640
MULTIPLE_OF = 16
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 160
MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1)
MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1)
SCHEDULER_MAP = {
"FlowMatchEulerDiscrete": FlowMatchEulerDiscreteScheduler,
"SASolver": SASolverScheduler,
"DEISMultistep": DEISMultistepScheduler,
"DPMSolverMultistepInverse": DPMSolverMultistepInverseScheduler,
"UniPCMultistep": UniPCMultistepScheduler,
"DPMSolverMultistep": DPMSolverMultistepScheduler,
"DPMSolverSinglestep": DPMSolverSinglestepScheduler,
}
pipe = WanImageToVideoPipeline.from_pretrained(
"TestOrganizationPleaseIgnore/WAMU_v1_WAN2.2_I2V_LIGHTNING",
torch_dtype=torch.bfloat16,
).to('cuda')
original_scheduler = copy.deepcopy(pipe.scheduler)
if os.path.exists(CACHE_DIR):
shutil.rmtree(CACHE_DIR)
print("Deleted Hugging Face cache.")
else:
print("No hub cache found.")
quantize_(pipe.text_encoder, Int8WeightOnlyConfig())
quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
quantize_(pipe.transformer_2, Float8DynamicActivationFloat8WeightConfig())
aoti.aoti_blocks_load(pipe.transformer, 'zerogpu-aoti/Wan2', variant='fp8da')
aoti.aoti_blocks_load(pipe.transformer_2, 'zerogpu-aoti/Wan2', variant='fp8da')
# pipe.vae.enable_slicing()
# pipe.vae.enable_tiling()
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"
def resize_image(image: Image.Image) -> Image.Image:
width, height = image.size
if width == height:
return image.resize((SQUARE_DIM, SQUARE_DIM), Image.LANCZOS)
aspect_ratio = width / height
MAX_ASPECT_RATIO = MAX_DIM / MIN_DIM
MIN_ASPECT_RATIO = MIN_DIM / MAX_DIM
image_to_resize = image
if aspect_ratio > MAX_ASPECT_RATIO:
target_w, target_h = MAX_DIM, MIN_DIM
crop_width = int(round(height * MAX_ASPECT_RATIO))
left = (width - crop_width) // 2
image_to_resize = image.crop((left, 0, left + crop_width, height))
elif aspect_ratio < MIN_ASPECT_RATIO:
target_w, target_h = MIN_DIM, MAX_DIM
crop_height = int(round(width / MIN_ASPECT_RATIO))
top = (height - crop_height) // 2
image_to_resize = image.crop((0, top, width, top + crop_height))
else:
if width > height:
target_w = MAX_DIM
target_h = int(round(target_w / aspect_ratio))
else:
target_h = MAX_DIM
target_w = int(round(target_h * aspect_ratio))
final_w = round(target_w / MULTIPLE_OF) * MULTIPLE_OF
final_h = round(target_h / MULTIPLE_OF) * MULTIPLE_OF
final_w = max(MIN_DIM, min(MAX_DIM, final_w))
final_h = max(MIN_DIM, min(MAX_DIM, final_h))
return image_to_resize.resize((final_w, final_h), Image.LANCZOS)
def resize_and_crop_to_match(target_image, reference_image):
ref_width, ref_height = reference_image.size
target_width, target_height = target_image.size
scale = max(ref_width / target_width, ref_height / target_height)
new_width, new_height = int(target_width * scale), int(target_height * scale)
resized = target_image.resize((new_width, new_height), Image.Resampling.LANCZOS)
left, top = (new_width - ref_width) // 2, (new_height - ref_height) // 2
return resized.crop((left, top, left + ref_width, top + ref_height))
def get_num_frames(duration_seconds: float):
return 1 + int(np.clip(
int(round(duration_seconds * FIXED_FPS)),
MIN_FRAMES_MODEL,
MAX_FRAMES_MODEL,
))
def get_inference_duration(
resized_image,
processed_last_image,
prompt,
steps,
negative_prompt,
num_frames,
guidance_scale,
guidance_scale_2,
current_seed,
scheduler_name,
flow_shift,
frame_multiplier,
quality,
duration_seconds,
progress
):
BASE_FRAMES_HEIGHT_WIDTH = 81 * 832 * 624
BASE_STEP_DURATION = 15
width, height = resized_image.size
factor = num_frames * width * height / BASE_FRAMES_HEIGHT_WIDTH
step_duration = BASE_STEP_DURATION * factor ** 1.5
gen_time = int(steps) * step_duration
print(gen_time)
if guidance_scale > 1:
gen_time = gen_time * 1.8
frame_factor = frame_multiplier // FIXED_FPS
if frame_factor > 1:
total_out_frames = (num_frames * frame_factor) - num_frames
inter_time = (total_out_frames * 0.02)
print(inter_time)
gen_time += inter_time
print("Time GPU", gen_time + 10)
return 10 + gen_time
@spaces.GPU(duration=get_inference_duration)
def run_inference(
resized_image,
processed_last_image,
prompt,
steps,
negative_prompt,
num_frames,
guidance_scale,
guidance_scale_2,
current_seed,
scheduler_name,
flow_shift,
frame_multiplier,
quality,
duration_seconds,
progress=gr.Progress(track_tqdm=True),
):
scheduler_class = SCHEDULER_MAP.get(scheduler_name)
if scheduler_class.__name__ != pipe.scheduler.config._class_name or flow_shift != pipe.scheduler.config.get("flow_shift", "shift"):
config = copy.deepcopy(original_scheduler.config)
if scheduler_class == FlowMatchEulerDiscreteScheduler:
config['shift'] = flow_shift
else:
config['flow_shift'] = flow_shift
pipe.scheduler = scheduler_class.from_config(config)
clear_vram()
task_name = str(uuid.uuid4())[:8]
print(f"Generating {num_frames} frames, task: {task_name}, {duration_seconds}, {resized_image.size}")
start = time.time()
result = pipe(
image=resized_image,
last_image=processed_last_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=resized_image.height,
width=resized_image.width,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
guidance_scale_2=float(guidance_scale_2),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed),
output_type="np"
)
print("gen time passed:", time.time() - start)
raw_frames_np = result.frames[0] # Returns (T, H, W, C) float32
pipe.scheduler = original_scheduler
frame_factor = frame_multiplier // FIXED_FPS
if frame_factor > 1:
start = time.time()
print(f"Processing frames (RIFE Multiplier: {frame_factor}x)...")
rife_model.device()
rife_model.flownet = rife_model.flownet.half()
final_frames = interpolate_bits(raw_frames_np, multiplier=int(frame_factor))
print("Interpolation time passed:", time.time() - start)
else:
final_frames = list(raw_frames_np)
final_fps = FIXED_FPS * int(frame_factor)
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
start = time.time()
with tqdm(total=3, desc="Rendering Media", unit="clip") as pbar:
pbar.update(2)
export_to_video(final_frames, video_path, fps=final_fps, quality=quality)
pbar.update(1)
print(f"Export time passed, {final_fps} FPS:", time.time() - start)
return video_path, task_name
def generate_video(
input_image,
last_image,
prompt,
steps=4,
negative_prompt=default_negative_prompt,
duration_seconds=MAX_DURATION,
guidance_scale=1,
guidance_scale_2=1,
seed=42,
randomize_seed=False,
quality=5,
scheduler="UniPCMultistep",
flow_shift=6.0,
frame_multiplier=16,
video_component=True,
progress=gr.Progress(track_tqdm=True),
):
"""
Generate a video from an input image using the Wan 2.2 14B I2V model with Lightning LoRA.
This function takes an input image and generates a video animation based on the provided
prompt and parameters. It uses an FP8 qunatized Wan 2.2 14B Image-to-Video model in with Lightning LoRA
for fast generation in 4-8 steps.
Args:
input_image (PIL.Image): The input image to animate. Will be resized to target dimensions.
last_image (PIL.Image, optional): The optional last image for the video.
prompt (str): Text prompt describing the desired animation or motion.
steps (int, optional): Number of inference steps. More steps = higher quality but slower.
Defaults to 4. Range: 1-30.
negative_prompt (str, optional): Negative prompt to avoid unwanted elements.
Defaults to default_negative_prompt (contains unwanted visual artifacts).
duration_seconds (float, optional): Duration of the generated video in seconds.
Defaults to 2. Clamped between MIN_FRAMES_MODEL/FIXED_FPS and MAX_FRAMES_MODEL/FIXED_FPS.
guidance_scale (float, optional): Controls adherence to the prompt. Higher values = more adherence.
Defaults to 1.0. Range: 0.0-20.0.
guidance_scale_2 (float, optional): Controls adherence to the prompt. Higher values = more adherence.
Defaults to 1.0. Range: 0.0-20.0.
seed (int, optional): Random seed for reproducible results. Defaults to 42.
Range: 0 to MAX_SEED (2147483647).
randomize_seed (bool, optional): Whether to use a random seed instead of the provided seed.
Defaults to False.
quality (float, optional): Video output quality. Default is 5. Uses variable bit rate.
Highest quality is 10, lowest is 1.
scheduler (str, optional): The name of the scheduler to use for inference. Defaults to "UniPCMultistep".
flow_shift (float, optional): The flow shift value for compatible schedulers. Defaults to 6.0.
frame_multiplier (int, optional): The int value for fps enhancer
video_component(bool, optional): Show video player in output.
Defaults to True.
progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True).
Returns:
tuple: A tuple containing:
- video_path (str): Path for the video component.
- video_path (str): Path for the file download component. Attempt to avoid reconversion in video component.
- current_seed (int): The seed used for generation.
Raises:
gr.Error: If input_image is None (no image uploaded).
Note:
- Frame count is calculated as duration_seconds * FIXED_FPS (24)
- Output dimensions are adjusted to be multiples of MOD_VALUE (32)
- The function uses GPU acceleration via the @spaces.GPU decorator
- Generation time varies based on steps and duration (see get_duration function)
"""
if input_image is None:
raise gr.Error("Please upload an input image.")
num_frames = get_num_frames(duration_seconds)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
resized_image = resize_image(input_image)
processed_last_image = None
if last_image:
processed_last_image = resize_and_crop_to_match(last_image, resized_image)
video_path, task_n = run_inference(
resized_image,
processed_last_image,
prompt,
steps,
negative_prompt,
num_frames,
guidance_scale,
guidance_scale_2,
current_seed,
scheduler,
flow_shift,
frame_multiplier,
quality,
duration_seconds,
progress,
)
print(f"GPU complete: {task_n}")
return (video_path if video_component else None), video_path, current_seed
CSS = """
#hidden-timestamp {
opacity: 0;
height: 0px;
width: 0px;
margin: 0px;
padding: 0px;
overflow: hidden;
position: absolute;
pointer-events: none;
}
"""
with gr.Blocks(delete_cache=(3600, 10800)) as demo:
gr.Markdown("## WAMU - Wan 2.2 I2V (14B) 🐢")
gr.Markdown("#### ℹ️ **A Note on Performance:** This version prioritizes a straightforward setup over maximum speed, so performance may vary.")
gr.Markdown("Run Wan 2.2 in just 4-8 steps, fp8 quantization & AoT compilation - compatible with 🧨 diffusers and ZeroGPU")
with gr.Row():
with gr.Column():
input_image_component = gr.Image(type="pil", label="Input Image", sources=["upload", "clipboard"])
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=3.5, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
frame_multi = gr.Dropdown(
choices=[FIXED_FPS, FIXED_FPS*2, FIXED_FPS*4, FIXED_FPS*8],
value=FIXED_FPS,
label="Video Fluidity (Frames per Second)",
info="Extra frames will be generated using flow estimation, which estimates motion between frames to make the video smoother."
)
with gr.Accordion("Advanced Settings", open=False):
last_image_component = gr.Image(type="pil", label="Last Image (Optional)", sources=["upload", "clipboard"])
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, info="Used if any Guidance Scale > 1.", lines=3)
quality_slider = gr.Slider(minimum=1, maximum=10, step=1, value=6, label="Video Quality", info="If set to 10, the generated video may be too large and won't play in the Gradio preview.")
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage", info="Values above 1 increase GPU usage and may take longer to process.")
guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale 2 - low noise stage")
scheduler_dropdown = gr.Dropdown(
label="Scheduler",
choices=list(SCHEDULER_MAP.keys()),
value="UniPCMultistep",
info="Select a custom scheduler."
)
flow_shift_slider = gr.Slider(minimum=0.5, maximum=15.0, step=0.1, value=3.0, label="Flow Shift")
play_result_video = gr.Checkbox(label="Display result", value=True, interactive=True)
org_name = "TestOrganizationPleaseIgnore"
gr.Markdown(f"[ZeroGPU help, tips and troubleshooting](https://huggingface.co/datasets/{org_name}/help/blob/main/gpu_help.md)")
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
# ASSIGNED elem_id="generated-video" so JS can find it
video_output = gr.Video(label="Generated Video", autoplay=True, sources=["upload"], buttons=["download", "share"], interactive=True, elem_id="generated-video")
# --- Frame Grabbing UI ---
with gr.Row():
grab_frame_btn = gr.Button("📸 Use Current Frame as Input", variant="secondary")
timestamp_box = gr.Number(value=0, label="Timestamp", visible=True, elem_id="hidden-timestamp")
# -------------------------
file_output = gr.File(label="Download Video")
ui_inputs = [
input_image_component, last_image_component, prompt_input, steps_slider,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, guidance_scale_2_input, seed_input, randomize_seed_checkbox,
quality_slider, scheduler_dropdown, flow_shift_slider, frame_multi,
play_result_video
]
generate_button.click(
fn=generate_video,
inputs=ui_inputs,
outputs=[video_output, file_output, seed_input]
)
# --- Frame Grabbing Events ---
# 1. Click button -> JS runs -> puts time in hidden number box
grab_frame_btn.click(
fn=None,
inputs=None,
outputs=[timestamp_box],
js=get_timestamp_js
)
# 2. Hidden number box changes -> Python runs -> puts frame in Input Image
timestamp_box.change(
fn=extract_frame,
inputs=[video_output, timestamp_box],
outputs=[input_image_component]
)
if __name__ == "__main__":
demo.queue().launch(
mcp_server=True,
css=CSS,
show_error=True,
)