Spaces:
Runtime error
Runtime error
add transformers emmbeddings and UMAP
Browse files- app.py +29 -84
- embeddings_encoder.py +45 -0
- umap_reducer.py +12 -22
app.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
from umap_reducer import UMAPReducer
|
|
|
|
| 2 |
from flask import Flask, request, render_template, jsonify, make_response
|
| 3 |
from flask_cors import CORS
|
| 4 |
import os
|
| 5 |
from dotenv import load_dotenv
|
| 6 |
-
from transformers import pipeline
|
| 7 |
import feedparser
|
| 8 |
import json
|
| 9 |
from dateutil import parser
|
|
@@ -13,12 +13,10 @@ import gzip
|
|
| 13 |
|
| 14 |
load_dotenv()
|
| 15 |
|
| 16 |
-
|
| 17 |
-
# sentiment_analysis = pipeline(
|
| 18 |
-
# "sentiment-analysis", model="siebert/sentiment-roberta-large-english")
|
| 19 |
app = Flask(__name__, static_url_path='/static')
|
| 20 |
reducer = UMAPReducer()
|
| 21 |
-
|
| 22 |
CORS(app)
|
| 23 |
|
| 24 |
|
|
@@ -27,87 +25,34 @@ def index():
|
|
| 27 |
return render_template('index.html')
|
| 28 |
|
| 29 |
|
| 30 |
-
@app.route('/run-umap'
|
| 31 |
def run_umap():
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
# except:
|
| 58 |
-
# cache = {}
|
| 59 |
-
|
| 60 |
-
# # if new homepage is newer than cache, update cache and return
|
| 61 |
-
# print("new date", feed_entries['last_update'])
|
| 62 |
-
# print("old date", cache['last_update']
|
| 63 |
-
# if 'last_update' in cache else "None")
|
| 64 |
-
# if not cache or parser.parse(feed_entries['last_update']) > parser.parse(cache['last_update']):
|
| 65 |
-
# print("Updating cache with new preditions")
|
| 66 |
-
# titles = [entry['title'] for entry in feed_entries['entries']]
|
| 67 |
-
# # run sentiment analysis on titles
|
| 68 |
-
# predictions = [sentiment_analysis(sentence) for sentence in titles]
|
| 69 |
-
# # parse Negative and Positive, normalize to -1 to 1
|
| 70 |
-
# predictions = [-prediction[0]['score'] if prediction[0]['label'] ==
|
| 71 |
-
# 'NEGATIVE' else prediction[0]['score'] for prediction in predictions]
|
| 72 |
-
# # merge rss data with predictions
|
| 73 |
-
# entries_predicitons = [{**entry, 'sentiment': prediction}
|
| 74 |
-
# for entry, prediction in zip(feed_entries['entries'], predictions)]
|
| 75 |
-
# output = {'entries': entries_predicitons,
|
| 76 |
-
# 'last_update': feed_entries['last_update']}
|
| 77 |
-
# # update last precitions cache
|
| 78 |
-
# with open(f'{file_name}_cache.json', 'w') as file:
|
| 79 |
-
# json.dump(output, file)
|
| 80 |
-
# # send back json
|
| 81 |
-
# return jsonify(output)
|
| 82 |
-
# else:
|
| 83 |
-
# print("Returning cached predictions")
|
| 84 |
-
# return jsonify(cache)
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
# @ app.route('/predict', methods=['POST'])
|
| 88 |
-
# def predict():
|
| 89 |
-
# # get data from POST
|
| 90 |
-
# if request.method == 'POST':
|
| 91 |
-
# # get current news
|
| 92 |
-
# # get post body data
|
| 93 |
-
# data = request.get_json()
|
| 94 |
-
# if data.get('sentences') is None:
|
| 95 |
-
# return jsonify({'error': 'No text provided'})
|
| 96 |
-
# # get post expeceted to be under {'sentences': ['text': '...']}
|
| 97 |
-
# sentences = data.get('sentences')
|
| 98 |
-
# # prencit sentiments
|
| 99 |
-
# predictions = [sentiment_analysis(sentence) for sentence in sentences]
|
| 100 |
-
# # parse Negative and Positive, normalize to -1 to 1
|
| 101 |
-
# predictions = [-prediction[0]['score'] if prediction[0]['label'] ==
|
| 102 |
-
# 'NEGATIVE' else prediction[0]['score'] for prediction in predictions]
|
| 103 |
-
# output = [dict(sentence=sentence, sentiment=prediction)
|
| 104 |
-
# for sentence, prediction in zip(sentences, predictions)]
|
| 105 |
-
# # send back json
|
| 106 |
-
# return jsonify(output)
|
| 107 |
|
| 108 |
|
| 109 |
-
# def get_feed(feed_url):
|
| 110 |
-
# feed = feedparser.parse(feed_url)
|
| 111 |
-
# return {'entries': feed['entries'], 'last_update': feed["feed"]['updated']}
|
| 112 |
if __name__ == '__main__':
|
| 113 |
app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 7860)))
|
|
|
|
| 1 |
from umap_reducer import UMAPReducer
|
| 2 |
+
from embeddings_encoder import EmbeddingsEncoder
|
| 3 |
from flask import Flask, request, render_template, jsonify, make_response
|
| 4 |
from flask_cors import CORS
|
| 5 |
import os
|
| 6 |
from dotenv import load_dotenv
|
|
|
|
| 7 |
import feedparser
|
| 8 |
import json
|
| 9 |
from dateutil import parser
|
|
|
|
| 13 |
|
| 14 |
load_dotenv()
|
| 15 |
|
| 16 |
+
|
|
|
|
|
|
|
| 17 |
app = Flask(__name__, static_url_path='/static')
|
| 18 |
reducer = UMAPReducer()
|
| 19 |
+
encoder = EmbeddingsEncoder()
|
| 20 |
CORS(app)
|
| 21 |
|
| 22 |
|
|
|
|
| 25 |
return render_template('index.html')
|
| 26 |
|
| 27 |
|
| 28 |
+
@app.route('/run-umap', methods=['POST'])
|
| 29 |
def run_umap():
|
| 30 |
+
input_data = request.get_json()
|
| 31 |
+
sentences = input_data['data']['sentences']
|
| 32 |
+
umap_options = input_data['data']['umap_options']
|
| 33 |
+
cluster_options = input_data['data']['cluster_options']
|
| 34 |
+
|
| 35 |
+
print("input options:", umap_options, cluster_options)
|
| 36 |
+
try:
|
| 37 |
+
embeddings = encoder.encode(sentences)
|
| 38 |
+
# UMAP embeddings
|
| 39 |
+
reducer.setParams(umap_options, cluster_options)
|
| 40 |
+
umap_embeddings = reducer.embed(embeddings)
|
| 41 |
+
# HDBScan cluster analysis
|
| 42 |
+
clusters = reducer.clusterAnalysis(umap_embeddings)
|
| 43 |
+
content = gzip.compress(json.dumps(
|
| 44 |
+
{
|
| 45 |
+
"embeddings": umap_embeddings.tolist(),
|
| 46 |
+
"clusters": clusters.labels_.tolist()
|
| 47 |
+
}
|
| 48 |
+
).encode('utf8'), 5)
|
| 49 |
+
response = make_response(content)
|
| 50 |
+
response.headers['Content-length'] = len(content)
|
| 51 |
+
response.headers['Content-Encoding'] = 'gzip'
|
| 52 |
+
return response
|
| 53 |
+
except Exception as e:
|
| 54 |
+
return jsonify({"error": str(e)}), 201
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
|
|
|
|
|
|
|
|
|
|
| 57 |
if __name__ == '__main__':
|
| 58 |
app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 7860)))
|
embeddings_encoder.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# from https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1
|
| 2 |
+
from transformers import AutoTokenizer, AutoModel
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class EmbeddingsEncoder:
|
| 8 |
+
def __init__(self):
|
| 9 |
+
# Load model from HuggingFace Hub
|
| 10 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 11 |
+
'sentence-transformers/all-MiniLM-L6-v2')
|
| 12 |
+
self.model = AutoModel.from_pretrained(
|
| 13 |
+
'sentence-transformers/all-MiniLM-L6-v2')
|
| 14 |
+
|
| 15 |
+
# Mean Pooling - Take average of all tokens
|
| 16 |
+
|
| 17 |
+
def mean_pooling(self, model_output, attention_mask):
|
| 18 |
+
# First element of model_output contains all token embeddings
|
| 19 |
+
token_embeddings = model_output.last_hidden_state
|
| 20 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 21 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 22 |
+
|
| 23 |
+
# Encode text
|
| 24 |
+
|
| 25 |
+
def encode(self, texts):
|
| 26 |
+
# Tokenize sentences
|
| 27 |
+
print("Tokenizing...")
|
| 28 |
+
encoded_input = self.tokenizer(
|
| 29 |
+
texts, padding=True, truncation=True, return_tensors='pt')
|
| 30 |
+
|
| 31 |
+
# Compute token embeddings
|
| 32 |
+
print("Computing embeddings...")
|
| 33 |
+
with torch.no_grad():
|
| 34 |
+
model_output = self.model(**encoded_input, return_dict=True)
|
| 35 |
+
|
| 36 |
+
# Perform pooling
|
| 37 |
+
print("Performing pooling...")
|
| 38 |
+
embeddings = self.mean_pooling(
|
| 39 |
+
model_output, encoded_input['attention_mask'])
|
| 40 |
+
|
| 41 |
+
# Normalize embeddings
|
| 42 |
+
print("Normalizing embeddings...")
|
| 43 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
| 44 |
+
|
| 45 |
+
return embeddings
|
umap_reducer.py
CHANGED
|
@@ -2,36 +2,26 @@ import umap
|
|
| 2 |
import hdbscan
|
| 3 |
import copy
|
| 4 |
|
|
|
|
| 5 |
class UMAPReducer:
|
| 6 |
-
def __init__(self,
|
| 7 |
|
| 8 |
# set options with defaults
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
print(options)
|
| 13 |
-
self.reducer = umap.UMAP(
|
| 14 |
-
n_neighbors=options['n_neighbors'],
|
| 15 |
-
min_dist=options['min_dist'],
|
| 16 |
-
n_components=options['n_components'],
|
| 17 |
-
metric=options['metric'],
|
| 18 |
-
verbose=True)
|
| 19 |
-
# cluster init
|
| 20 |
-
self.clusterer = hdbscan.HDBSCAN(
|
| 21 |
-
min_cluster_size=options['min_cluster_size'],
|
| 22 |
-
min_samples=options['min_samples'],
|
| 23 |
-
allow_single_cluster=True
|
| 24 |
-
)
|
| 25 |
-
self.cluster_params = copy.deepcopy(options)
|
| 26 |
|
| 27 |
-
def setParams(self,
|
| 28 |
# update params
|
| 29 |
-
self.
|
|
|
|
| 30 |
|
| 31 |
def clusterAnalysis(self, data):
|
| 32 |
-
|
|
|
|
| 33 |
return clusters
|
| 34 |
|
| 35 |
def embed(self, data):
|
| 36 |
-
|
|
|
|
| 37 |
return result
|
|
|
|
| 2 |
import hdbscan
|
| 3 |
import copy
|
| 4 |
|
| 5 |
+
|
| 6 |
class UMAPReducer:
|
| 7 |
+
def __init__(self, umap_options={}, cluster_options={}):
|
| 8 |
|
| 9 |
# set options with defaults
|
| 10 |
+
self.umap_options = {'n_components': 2, 'spread': 1, 'min_dist': 0.1, 'n_neighbors': 15,
|
| 11 |
+
'metric': 'cosine', "verbose": True, **umap_options}
|
| 12 |
+
self.cluster_options = {'allow_single_cluster': True, 'min_cluster_size': 500, 'min_samples': 10, **cluster_options}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
def setParams(self, umap_options={}, cluster_options={}):
|
| 15 |
# update params
|
| 16 |
+
self.umap_options = {**self.umap_options, **umap_options}
|
| 17 |
+
self.cluster_options = {**self.cluster_options, **cluster_options}
|
| 18 |
|
| 19 |
def clusterAnalysis(self, data):
|
| 20 |
+
print("Cluster params:", self.cluster_options)
|
| 21 |
+
clusters = hdbscan.HDBSCAN().fit(data) # **self.cluster_options
|
| 22 |
return clusters
|
| 23 |
|
| 24 |
def embed(self, data):
|
| 25 |
+
print("UMAP params:", self.umap_options)
|
| 26 |
+
result = umap.UMAP(**self.umap_options).fit_transform(data)
|
| 27 |
return result
|