Spaces:
Sleeping
Sleeping
first
Browse files- .gitignore +3 -0
- Dockerfile +25 -0
- app.py +49 -0
- requirements.txt +6 -0
- visualblocks/__init__.py +3 -0
- visualblocks/server.py +317 -0
.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
venv
|
| 2 |
+
__pycache__
|
| 3 |
+
*.py[cod]
|
Dockerfile
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.9
|
| 2 |
+
|
| 3 |
+
WORKDIR /code
|
| 4 |
+
|
| 5 |
+
COPY ./requirements.txt /code/requirements.txt
|
| 6 |
+
|
| 7 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
| 8 |
+
|
| 9 |
+
# Set up a new user named "user" with user ID 1000
|
| 10 |
+
RUN useradd -m -u 1000 user
|
| 11 |
+
# Switch to the "user" user
|
| 12 |
+
USER user
|
| 13 |
+
# Set home to the user's home directory
|
| 14 |
+
ENV HOME=/home/user \
|
| 15 |
+
PATH=/home/user/.local/bin:$PATH \
|
| 16 |
+
PYTHONPATH=$HOME/app \
|
| 17 |
+
PYTHONUNBUFFERED=1
|
| 18 |
+
|
| 19 |
+
# Set the working directory to the user's home directory
|
| 20 |
+
WORKDIR $HOME/app
|
| 21 |
+
|
| 22 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
| 23 |
+
COPY --chown=user . $HOME/app
|
| 24 |
+
|
| 25 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
import tensorflow_hub as hub
|
| 4 |
+
from tensorflow.python.ops.numpy_ops import np_config
|
| 5 |
+
from visualblocks import register_vb_fn, Server
|
| 6 |
+
|
| 7 |
+
np_config.enable_numpy_behavior()
|
| 8 |
+
|
| 9 |
+
hub_handle = "https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2"
|
| 10 |
+
hub_module = hub.load(hub_handle)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# Register the function with visual blocks using the "generic" type (meaning
|
| 14 |
+
# tensors in, tensors out)
|
| 15 |
+
@register_vb_fn(type="generic")
|
| 16 |
+
def styleTransfer(tensors):
|
| 17 |
+
"""Inference function for use with Visual Blocks.
|
| 18 |
+
|
| 19 |
+
This function is passed to the Visual Blocks server, which calls it to
|
| 20 |
+
implement a Colab model runner block.
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
tensors: A list of np.ndarrays as input tensors. For this particular
|
| 24 |
+
inference function, only the first two np.ndarrays are used. The first
|
| 25 |
+
np.ndarrays is the input content image as a tensor of size [1,
|
| 26 |
+
content_image_height, content_image_width, 3] with floating point pixel
|
| 27 |
+
values ranging from 0 to 1. The second np.ndarrays is the
|
| 28 |
+
input style image as a tensor of size [1, style_image_height,
|
| 29 |
+
style_image_width, 3] with floating point pixel values ranging from 0 to 1.
|
| 30 |
+
|
| 31 |
+
Returns:
|
| 32 |
+
tensors: A list of np.ndarrays as output tensors. For this particular
|
| 33 |
+
inference function, only the first item is used. The first item is the
|
| 34 |
+
output image as a tensor of size [1, height, width, 3] with floating point
|
| 35 |
+
pixel values ranging from 0 to 1.
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
content_tensor = tf.constant(tensors[0], dtype=tf.float32)
|
| 39 |
+
style_tensor = tf.constant(tensors[1], dtype=tf.float32)
|
| 40 |
+
outputs = hub_module(content_tensor, style_tensor)
|
| 41 |
+
stylized_image = outputs[0].numpy()
|
| 42 |
+
|
| 43 |
+
return [
|
| 44 |
+
stylized_image,
|
| 45 |
+
]
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
server = Server()
|
| 49 |
+
server.run()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
tensorflow
|
| 2 |
+
numpy
|
| 3 |
+
pandas
|
| 4 |
+
tensorflow_hub
|
| 5 |
+
flask
|
| 6 |
+
portpicker
|
visualblocks/__init__.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Welcome to Visual Blocks!"""
|
| 2 |
+
|
| 3 |
+
from .server import Server, register_vb_fn
|
visualblocks/server.py
ADDED
|
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datetime import datetime
|
| 2 |
+
from flask import Flask
|
| 3 |
+
from flask import make_response
|
| 4 |
+
from flask import request
|
| 5 |
+
from flask import send_from_directory
|
| 6 |
+
from typing import Literal
|
| 7 |
+
import json
|
| 8 |
+
import logging
|
| 9 |
+
import numpy as np
|
| 10 |
+
import os
|
| 11 |
+
import portpicker
|
| 12 |
+
import requests
|
| 13 |
+
import shutil
|
| 14 |
+
import sys
|
| 15 |
+
import threading
|
| 16 |
+
import traceback
|
| 17 |
+
import urllib.parse
|
| 18 |
+
import zipfile
|
| 19 |
+
|
| 20 |
+
_VISUAL_BLOCKS_BUNDLE_VERSION = "1683568957"
|
| 21 |
+
|
| 22 |
+
# Disable logging from werkzeug.
|
| 23 |
+
#
|
| 24 |
+
# Without this, flask will show a warning about using dev server (which is OK
|
| 25 |
+
# in our usecase).
|
| 26 |
+
logging.getLogger("werkzeug").disabled = True
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# Function registrations.
|
| 30 |
+
GENERIC_FNS = {}
|
| 31 |
+
TEXT_TO_TEXT_FNS = {}
|
| 32 |
+
TEXT_TO_TENSORS_FNS = {}
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def register_vb_fn(
|
| 36 |
+
type: Literal["generic", "text_to_text", "text_to_tensors"] = "generic"
|
| 37 |
+
):
|
| 38 |
+
"""A function decorator to register python function with Visual Blocks.
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
type:
|
| 42 |
+
the type of function to register for.
|
| 43 |
+
|
| 44 |
+
Currently, VB supports the following function types:
|
| 45 |
+
|
| 46 |
+
generic:
|
| 47 |
+
A function or iterable of functions, defined in the same Colab notebook,
|
| 48 |
+
that Visual Blocks can call to implement a generic model runner block.
|
| 49 |
+
|
| 50 |
+
A generic inference function must take a single argument, the input
|
| 51 |
+
tensors as an iterable of numpy.ndarrays; run inference; and return the
|
| 52 |
+
output tensors, also as an iterable of numpy.ndarrays.
|
| 53 |
+
|
| 54 |
+
text_to_text:
|
| 55 |
+
A function or iterable of functions, defined in the same Colab notebook,
|
| 56 |
+
that Visual Blocks can call to implement a text-to-text model runner
|
| 57 |
+
block.
|
| 58 |
+
|
| 59 |
+
A text_to_text function must take a string and return a string.
|
| 60 |
+
|
| 61 |
+
text_to_tensors:
|
| 62 |
+
A function or iterable of functions, defined in the same Colab notebook,
|
| 63 |
+
that Visual Blocks can call to implement a text-to-tensors model runner
|
| 64 |
+
block.
|
| 65 |
+
|
| 66 |
+
A text_to_tensors function must take a string and return the output
|
| 67 |
+
tensors, as an iterable of numpy.ndarrays.
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
def decorator_register_vb_fn(func):
|
| 71 |
+
func_name = func.__name__
|
| 72 |
+
if type == "generic":
|
| 73 |
+
GENERIC_FNS[func_name] = func
|
| 74 |
+
elif type == "text_to_text":
|
| 75 |
+
TEXT_TO_TEXT_FNS[func_name] = func
|
| 76 |
+
elif type == "text_to_tensors":
|
| 77 |
+
TEXT_TO_TENSORS_FNS[func_name] = func
|
| 78 |
+
return func
|
| 79 |
+
|
| 80 |
+
return decorator_register_vb_fn
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def _json_to_ndarray(json_tensor):
|
| 84 |
+
"""Convert a JSON dictionary from the web app to an np.ndarray."""
|
| 85 |
+
array = np.array(json_tensor["tensorValues"])
|
| 86 |
+
array.shape = json_tensor["tensorShape"]
|
| 87 |
+
return array
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def _ndarray_to_json(array):
|
| 91 |
+
"""Convert a np.ndarray to the JSON dictionary for the web app."""
|
| 92 |
+
values = array.ravel().tolist()
|
| 93 |
+
shape = array.shape
|
| 94 |
+
return {
|
| 95 |
+
"tensorValues": values,
|
| 96 |
+
"tensorShape": shape,
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def _make_json_response(obj):
|
| 101 |
+
body = json.dumps(obj)
|
| 102 |
+
resp = make_response(body)
|
| 103 |
+
resp.headers["Content-Type"] = "application/json"
|
| 104 |
+
return resp
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def _ensure_iterable(x):
|
| 108 |
+
"""Turn x into an iterable if not already iterable."""
|
| 109 |
+
if x is None:
|
| 110 |
+
return ()
|
| 111 |
+
elif hasattr(x, "__iter__"):
|
| 112 |
+
return x
|
| 113 |
+
else:
|
| 114 |
+
return (x,)
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def _add_to_registry(fns, registry):
|
| 118 |
+
"""Adds the functions to the given registry (dict)."""
|
| 119 |
+
for fn in fns:
|
| 120 |
+
registry[fn.__name__] = fn
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def _is_list_of_nd_array(obj):
|
| 124 |
+
return isinstance(obj, list) and all(isinstance(elem, np.ndarray) for elem in obj)
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def Server(
|
| 128 |
+
host="localhost",
|
| 129 |
+
port=7860,
|
| 130 |
+
generic=None,
|
| 131 |
+
text_to_text=None,
|
| 132 |
+
text_to_tensors=None,
|
| 133 |
+
height=900,
|
| 134 |
+
tmp_dir="/tmp",
|
| 135 |
+
read_saved_pipeline=True,
|
| 136 |
+
):
|
| 137 |
+
"""Creates a server that serves visual blocks web app in an iFrame.
|
| 138 |
+
|
| 139 |
+
Other than serving the web app, it will also listen to requests sent from the
|
| 140 |
+
web app at various API end points. Once a request is received, it will use the
|
| 141 |
+
data in the request body to call the corresponding functions that users have
|
| 142 |
+
registered with VB, either through the '@register_vb_fn' decorator, or passed
|
| 143 |
+
in when creating the server.
|
| 144 |
+
|
| 145 |
+
Args:
|
| 146 |
+
generic:
|
| 147 |
+
A function or iterable of functions, defined in the same Colab notebook,
|
| 148 |
+
that Visual Blocks can call to implement a generic model runner block.
|
| 149 |
+
|
| 150 |
+
A generic inference function must take a single argument, the input
|
| 151 |
+
tensors as an iterable of numpy.ndarrays; run inference; and return the output
|
| 152 |
+
tensors, also as an iterable of numpy.ndarrays.
|
| 153 |
+
|
| 154 |
+
text_to_text:
|
| 155 |
+
A function or iterable of functions, defined in the same Colab notebook,
|
| 156 |
+
that Visual Blocks can call to implement a text-to-text model runner
|
| 157 |
+
block.
|
| 158 |
+
|
| 159 |
+
A text_to_text function must take a string and return a string.
|
| 160 |
+
|
| 161 |
+
text_to_tensors:
|
| 162 |
+
A function or iterable of functions, defined in the same Colab notebook,
|
| 163 |
+
that Visual Blocks can call to implement a text-to-tensors model runner
|
| 164 |
+
block.
|
| 165 |
+
|
| 166 |
+
A text_to_tensors function must take a string and return the output
|
| 167 |
+
tensors, as an iterable of numpy.ndarrays.
|
| 168 |
+
|
| 169 |
+
height:
|
| 170 |
+
The height of the embedded iFrame.
|
| 171 |
+
|
| 172 |
+
tmp_dir:
|
| 173 |
+
The tmp dir where the server stores the web app's static resources.
|
| 174 |
+
|
| 175 |
+
read_saved_pipeline:
|
| 176 |
+
Whether to read the saved pipeline in the notebook or not.
|
| 177 |
+
"""
|
| 178 |
+
|
| 179 |
+
_add_to_registry(_ensure_iterable(generic), GENERIC_FNS)
|
| 180 |
+
_add_to_registry(_ensure_iterable(text_to_text), TEXT_TO_TEXT_FNS)
|
| 181 |
+
_add_to_registry(_ensure_iterable(text_to_tensors), TEXT_TO_TENSORS_FNS)
|
| 182 |
+
|
| 183 |
+
app = Flask(__name__)
|
| 184 |
+
|
| 185 |
+
# Disable startup messages.
|
| 186 |
+
cli = sys.modules["flask.cli"]
|
| 187 |
+
cli.show_server_banner = lambda *x: None
|
| 188 |
+
|
| 189 |
+
# Prepare tmp dir and log file.
|
| 190 |
+
base_path = tmp_dir + "/visual-blocks-colab"
|
| 191 |
+
if os.path.exists(base_path):
|
| 192 |
+
shutil.rmtree(base_path)
|
| 193 |
+
os.mkdir(base_path)
|
| 194 |
+
log_file_path = base_path + "/log"
|
| 195 |
+
open(log_file_path, "w").close()
|
| 196 |
+
|
| 197 |
+
# Download the zip file that bundles the visual blocks web app.
|
| 198 |
+
bundle_target_path = os.path.join(base_path, "visual_blocks.zip")
|
| 199 |
+
url = (
|
| 200 |
+
"https://storage.googleapis.com/tfweb/rapsai-colab-bundles/visual_blocks_%s.zip"
|
| 201 |
+
% _VISUAL_BLOCKS_BUNDLE_VERSION
|
| 202 |
+
)
|
| 203 |
+
r = requests.get(url)
|
| 204 |
+
with open(bundle_target_path, "wb") as zip_file:
|
| 205 |
+
zip_file.write(r.content)
|
| 206 |
+
|
| 207 |
+
# Unzip it.
|
| 208 |
+
# This will unzip all files to {base_path}/build.
|
| 209 |
+
with zipfile.ZipFile(bundle_target_path, "r") as zip_ref:
|
| 210 |
+
zip_ref.extractall(base_path)
|
| 211 |
+
site_root_path = os.path.join(base_path, "build")
|
| 212 |
+
|
| 213 |
+
def log(msg):
|
| 214 |
+
"""Logs the given message to the log file."""
|
| 215 |
+
now = datetime.now()
|
| 216 |
+
dt_string = now.strftime("%d/%m/%Y %H:%M:%S")
|
| 217 |
+
with open(log_file_path, "a") as log_file:
|
| 218 |
+
log_file.write("{}: {}\n".format(dt_string, msg))
|
| 219 |
+
|
| 220 |
+
@app.route("/api/list_inference_functions")
|
| 221 |
+
def list_inference_functions():
|
| 222 |
+
result = {}
|
| 223 |
+
if len(GENERIC_FNS):
|
| 224 |
+
result["generic"] = list(GENERIC_FNS.keys())
|
| 225 |
+
result["generic"].sort()
|
| 226 |
+
if len(TEXT_TO_TEXT_FNS):
|
| 227 |
+
result["text_to_text"] = list(TEXT_TO_TEXT_FNS.keys())
|
| 228 |
+
result["text_to_text"].sort()
|
| 229 |
+
if len(TEXT_TO_TENSORS_FNS):
|
| 230 |
+
result["text_to_tensors"] = list(TEXT_TO_TENSORS_FNS.keys())
|
| 231 |
+
result["text_to_tensors"].sort()
|
| 232 |
+
return _make_json_response(result)
|
| 233 |
+
|
| 234 |
+
# Note: using "/api/..." for POST requests is not allowed.
|
| 235 |
+
@app.route("/apipost/inference", methods=["POST"])
|
| 236 |
+
def inference_generic():
|
| 237 |
+
"""Handler for the generic api endpoint."""
|
| 238 |
+
result = {}
|
| 239 |
+
try:
|
| 240 |
+
func_name = request.json["function"]
|
| 241 |
+
inference_fn = GENERIC_FNS[func_name]
|
| 242 |
+
input_tensors = [_json_to_ndarray(x) for x in request.json["tensors"]]
|
| 243 |
+
output_tensors = inference_fn(input_tensors)
|
| 244 |
+
if not _is_list_of_nd_array(output_tensors):
|
| 245 |
+
result = {
|
| 246 |
+
"error": "The returned value from %s is not a list of ndarray"
|
| 247 |
+
% func_name
|
| 248 |
+
}
|
| 249 |
+
else:
|
| 250 |
+
result["tensors"] = [_ndarray_to_json(x) for x in output_tensors]
|
| 251 |
+
except Exception as e:
|
| 252 |
+
msg = "".join(traceback.format_exception(type(e), e, e.__traceback__))
|
| 253 |
+
result = {"error": msg}
|
| 254 |
+
finally:
|
| 255 |
+
return _make_json_response(result)
|
| 256 |
+
|
| 257 |
+
# Note: using "/api/..." for POST requests is not allowed.
|
| 258 |
+
@app.route("/apipost/inference_text_to_text", methods=["POST"])
|
| 259 |
+
def inference_text_to_text():
|
| 260 |
+
"""Handler for the text_to_text api endpoint."""
|
| 261 |
+
result = {}
|
| 262 |
+
try:
|
| 263 |
+
func_name = request.json["function"]
|
| 264 |
+
inference_fn = TEXT_TO_TEXT_FNS[func_name]
|
| 265 |
+
text = request.json["text"]
|
| 266 |
+
ret = inference_fn(text)
|
| 267 |
+
if not isinstance(ret, str):
|
| 268 |
+
result = {
|
| 269 |
+
"error": "The returned value from %s is not a string" % func_name
|
| 270 |
+
}
|
| 271 |
+
else:
|
| 272 |
+
result["text"] = ret
|
| 273 |
+
except Exception as e:
|
| 274 |
+
msg = "".join(traceback.format_exception(type(e), e, e.__traceback__))
|
| 275 |
+
result = {"error": msg}
|
| 276 |
+
finally:
|
| 277 |
+
return _make_json_response(result)
|
| 278 |
+
|
| 279 |
+
# Note: using "/api/..." for POST requests is not allowed.
|
| 280 |
+
@app.route("/apipost/inference_text_to_tensors", methods=["POST"])
|
| 281 |
+
def inference_text_to_tensors():
|
| 282 |
+
"""Handler for the text_to_tensors api endpoint."""
|
| 283 |
+
result = {}
|
| 284 |
+
try:
|
| 285 |
+
func_name = request.json["function"]
|
| 286 |
+
inference_fn = TEXT_TO_TENSORS_FNS[func_name]
|
| 287 |
+
text = request.json["text"]
|
| 288 |
+
output_tensors = inference_fn(text)
|
| 289 |
+
if not _is_list_of_nd_array(output_tensors):
|
| 290 |
+
result = {
|
| 291 |
+
"error": "The returned value from %s is not a list of ndarray"
|
| 292 |
+
% func_name
|
| 293 |
+
}
|
| 294 |
+
else:
|
| 295 |
+
result["tensors"] = [_ndarray_to_json(x) for x in output_tensors]
|
| 296 |
+
except Exception as e:
|
| 297 |
+
msg = "".join(traceback.format_exception(type(e), e, e.__traceback__))
|
| 298 |
+
result = {"error": msg}
|
| 299 |
+
finally:
|
| 300 |
+
return _make_json_response(result)
|
| 301 |
+
|
| 302 |
+
@app.route("/", defaults={"path": "index.html"})
|
| 303 |
+
@app.route("/<path:path>")
|
| 304 |
+
def get_static(path):
|
| 305 |
+
"""Handler for serving static resources."""
|
| 306 |
+
return send_from_directory(site_root_path, path)
|
| 307 |
+
|
| 308 |
+
# Start background server.
|
| 309 |
+
# threading.Thread(target=app.run, kwargs={"host": host, "port": port}).start()
|
| 310 |
+
|
| 311 |
+
# A thin wrapper class for exposing a "display" method.
|
| 312 |
+
class _Server:
|
| 313 |
+
def run(self):
|
| 314 |
+
print("Visual Blocks server started at http://%s:%s" % (host, port))
|
| 315 |
+
app.run(host=host, port=port)
|
| 316 |
+
|
| 317 |
+
return _Server()
|