Spaces:
Sleeping
Sleeping
Create chatbot.py
Browse files- chatbot.py +48 -0
chatbot.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
chatbot.py
|
| 3 |
+
|
| 4 |
+
Module to create a chatbot using RetrievalQA and the ChromaDB embeddings.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
from langchain_openai import OpenAI
|
| 8 |
+
from langchain.chains import RetrievalQA
|
| 9 |
+
|
| 10 |
+
def create_chatbot(vector_store):
|
| 11 |
+
"""Creates a chatbot that retrieves and answers questions.
|
| 12 |
+
|
| 13 |
+
Args:
|
| 14 |
+
vector_store (Chroma): Vector store with document embeddings.
|
| 15 |
+
|
| 16 |
+
Returns:
|
| 17 |
+
RetrievalQA: A retrieval-based QA system.
|
| 18 |
+
"""
|
| 19 |
+
llm = OpenAI(temperature=0.5)
|
| 20 |
+
retriever = vector_store.as_retriever(search_type="mmr", k=3)
|
| 21 |
+
|
| 22 |
+
qa = RetrievalQA.from_chain_type(
|
| 23 |
+
llm=llm,
|
| 24 |
+
chain_type="stuff",
|
| 25 |
+
retriever=retriever,
|
| 26 |
+
return_source_documents=True
|
| 27 |
+
)
|
| 28 |
+
return qa
|
| 29 |
+
|
| 30 |
+
def ask_question(qa, query):
|
| 31 |
+
"""Queries the chatbot and returns the answer.
|
| 32 |
+
|
| 33 |
+
Args:
|
| 34 |
+
qa (RetrievalQA): The QA system.
|
| 35 |
+
query (str): The user query.
|
| 36 |
+
|
| 37 |
+
Returns:
|
| 38 |
+
str: The answer with source information if available.
|
| 39 |
+
"""
|
| 40 |
+
try:
|
| 41 |
+
response = qa.invoke({"query": query})
|
| 42 |
+
answer = response.get('result', 'No answer found.')
|
| 43 |
+
sources = response.get('source_documents', [])
|
| 44 |
+
|
| 45 |
+
return f"Answer: {answer}\n"
|
| 46 |
+
except Exception as e:
|
| 47 |
+
print(f"Error processing query '{query}': {e}")
|
| 48 |
+
return f"Error: {e}"
|