Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| from PIL import Image | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from huggingface_hub import upload_file | |
| import os | |
| import uuid | |
| import logging | |
| # Model configuration | |
| MID = "apple/FastVLM-0.5B" | |
| IMAGE_TOKEN_INDEX = -200 | |
| HF_MODEL = "rahul7star/VideoExplain" | |
| # Load model and tokenizer (lazy load) | |
| tok = None | |
| model = None | |
| def load_model(): | |
| global tok, model | |
| if tok is None or model is None: | |
| print("Loading model...") | |
| tok = AutoTokenizer.from_pretrained(MID, trust_remote_code=True) | |
| if torch.cuda.is_available(): | |
| device = "cuda" | |
| dtype = torch.float16 | |
| else: | |
| device = "cpu" | |
| dtype = torch.float32 | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MID, | |
| torch_dtype=dtype, | |
| device_map=device, | |
| trust_remote_code=True, | |
| ) | |
| print(f"Model loaded on {device.upper()} successfully!") | |
| return tok, model | |
| def upload_to_hf(image_path, summary_text): | |
| """Upload image + summary text to Hugging Face model repo""" | |
| unique_folder = f"image_{uuid.uuid4().hex[:8]}" | |
| logging.info(f"Creating new HF folder: {unique_folder} in repo {HF_MODEL}") | |
| # Upload image | |
| img_filename = os.path.basename(image_path) | |
| img_hf_path = f"{unique_folder}/{img_filename}" | |
| upload_file( | |
| path_or_fileobj=image_path, | |
| path_in_repo=img_hf_path, | |
| repo_id=HF_MODEL, | |
| repo_type="model", | |
| token=os.environ.get("HUGGINGFACE_HUB_TOKEN"), | |
| ) | |
| logging.info(f"✅ Uploaded image to HF: {img_hf_path}") | |
| # Upload summary text | |
| summary_file = "/tmp/summary.txt" | |
| with open(summary_file, "w", encoding="utf-8") as f: | |
| f.write(summary_text) | |
| summary_hf_path = f"{unique_folder}/summary.txt" | |
| upload_file( | |
| path_or_fileobj=summary_file, | |
| path_in_repo=summary_hf_path, | |
| repo_id=HF_MODEL, | |
| repo_type="model", | |
| token=os.environ.get("HUGGINGFACE_HUB_TOKEN"), | |
| ) | |
| logging.info(f"✅ Uploaded summary to HF: {summary_hf_path}") | |
| return f"Uploaded to Hugging Face under {unique_folder}" | |
| def caption_image(image, custom_prompt=None): | |
| """Generate caption + upload image+caption to HF""" | |
| if image is None: | |
| return "Please upload an image first." | |
| try: | |
| # Save uploaded image locally (needed for upload) | |
| temp_img = "/tmp/uploaded_image.png" | |
| image.save(temp_img) | |
| # Load model | |
| tok, model = load_model() | |
| if image.mode != "RGB": | |
| image = image.convert("RGB") | |
| prompt = custom_prompt if custom_prompt else "Describe this image in detail." | |
| messages = [{"role": "user", "content": f"<image>\n{prompt}"}] | |
| rendered = tok.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) | |
| pre, post = rendered.split("<image>", 1) | |
| pre_ids = tok(pre, return_tensors="pt", add_special_tokens=False).input_ids | |
| post_ids = tok(post, return_tensors="pt", add_special_tokens=False).input_ids | |
| img_tok = torch.tensor([[IMAGE_TOKEN_INDEX]], dtype=pre_ids.dtype) | |
| input_ids = torch.cat([pre_ids, img_tok, post_ids], dim=1).to(model.device) | |
| attention_mask = torch.ones_like(input_ids, device=model.device) | |
| px = model.get_vision_tower().image_processor(images=image, return_tensors="pt")["pixel_values"] | |
| px = px.to(model.device, dtype=model.dtype) | |
| with torch.no_grad(): | |
| out = model.generate( | |
| inputs=input_ids, | |
| attention_mask=attention_mask, | |
| images=px, | |
| max_new_tokens=128, | |
| do_sample=False, | |
| ) | |
| generated_text = tok.decode(out[0], skip_special_tokens=True) | |
| response = generated_text.split("assistant")[-1].strip() if "assistant" in generated_text else generated_text | |
| # Upload image + caption to HF repo | |
| upload_status = upload_to_hf(temp_img, response) | |
| return f"{response}\n\n---\n{upload_status}" | |
| except Exception as e: | |
| return f"Error generating caption: {str(e)}" | |
| # Gradio UI | |
| with gr.Blocks(title="FastVLM Image Captioning") as demo: | |
| gr.Markdown("# 🖼️ FastVLM Image Captioning") | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_input = gr.Image(type="pil", label="Upload Image") | |
| custom_prompt = gr.Textbox( | |
| label="Custom Prompt (Optional)", | |
| placeholder="Leave empty for default prompt", | |
| lines=2 | |
| ) | |
| generate_btn = gr.Button("Generate + Upload", variant="primary") | |
| clear_btn = gr.ClearButton([image_input, custom_prompt]) | |
| with gr.Column(): | |
| output = gr.Textbox(label="Generated Caption + Upload Status", lines=8, show_copy_button=True) | |
| generate_btn.click(caption_image, [image_input, custom_prompt], output) | |
| if __name__ == "__main__": | |
| demo.launch(server_name="0.0.0.0", server_port=7860, share=False, show_error=True) | |