File size: 10,953 Bytes
6d29b78
 
 
 
 
 
 
9d1bc12
6d29b78
9d1bc12
6d29b78
 
 
 
2e8da0d
6d29b78
 
 
 
 
 
9d1bc12
 
 
 
6d29b78
9d1bc12
 
 
6d29b78
9d1bc12
 
 
6d29b78
9d1bc12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d29b78
 
9d1bc12
 
 
6d29b78
9d1bc12
6d29b78
 
9d1bc12
6d29b78
9d1bc12
 
 
6d29b78
 
9d1bc12
 
 
 
6d29b78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d1bc12
6d29b78
 
 
9d1bc12
 
 
 
 
 
 
 
 
 
 
6d29b78
 
9d1bc12
 
 
6d29b78
9d1bc12
 
 
 
 
6d29b78
9d1bc12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d29b78
 
9d1bc12
 
 
6d29b78
 
 
 
9d1bc12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d29b78
9d1bc12
 
 
6d29b78
9d1bc12
6d29b78
9d1bc12
 
6d29b78
 
9d1bc12
 
 
6d29b78
 
 
 
9d1bc12
6d29b78
9d1bc12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d29b78
9d1bc12
 
 
6d29b78
9d1bc12
6d29b78
9d1bc12
 
6d29b78
9d1bc12
 
 
 
6d29b78
9d1bc12
6d29b78
 
9d1bc12
6d29b78
9d1bc12
 
 
 
 
 
 
 
 
6d29b78
9d1bc12
 
 
6d29b78
9d1bc12
6d29b78
 
9d1bc12
 
792bd64
 
 
 
6d29b78
792bd64
 
ea621bd
 
 
 
 
 
 
 
 
 
 
66aa19e
6d29b78
ea621bd
 
 
 
 
8ee0e91
 
 
ea621bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ee0e91
ea621bd
 
 
8ee0e91
696c058
6d29b78
9d1bc12
 
6d29b78
 
 
25905dd
6d29b78
25905dd
 
6d29b78
 
 
 
9d1bc12
 
 
6d29b78
 
9d1bc12
26bc6ef
 
 
 
 
 
 
9d1bc12
6d29b78
25905dd
 
 
 
 
 
6d29b78
9d1bc12
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import torch
import spaces
import gradio as gr
import sys
import platform
import diffusers
import transformers
import psutil
import os
import time

from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from diffusers import ZImagePipeline, AutoModel
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
latent_history = []

# ============================================================
# LOGGING BUFFER
# ============================================================
LOGS = ""
def log(msg):
    global LOGS
    print(msg)
    LOGS += msg + "\n"
    return msg


# ============================================================
# SYSTEM METRICS β€” LIVE GPU + CPU MONITORING
# ============================================================
def log_system_stats(tag=""):
    try:
        log(f"\n===== πŸ”₯ SYSTEM STATS {tag} =====")

        # ============= GPU STATS =============
        if torch.cuda.is_available():
            allocated = torch.cuda.memory_allocated(0) / 1e9
            reserved = torch.cuda.memory_reserved(0) / 1e9
            total = torch.cuda.get_device_properties(0).total_memory / 1e9
            free = total - allocated

            log(f"πŸ’  GPU Total     : {total:.2f} GB")
            log(f"πŸ’  GPU Allocated : {allocated:.2f} GB")
            log(f"πŸ’  GPU Reserved  : {reserved:.2f} GB")
            log(f"πŸ’  GPU Free      : {free:.2f} GB")

        # ============= CPU STATS ============
        cpu = psutil.cpu_percent()
        ram_used = psutil.virtual_memory().used / 1e9
        ram_total = psutil.virtual_memory().total / 1e9

        log(f"🧠 CPU Usage     : {cpu}%")
        log(f"🧠 RAM Used      : {ram_used:.2f} GB / {ram_total:.2f} GB")

    except Exception as e:
        log(f"⚠️ Failed to log system stats: {e}")


# ============================================================
# ENVIRONMENT INFO
# ============================================================
log("===================================================")
log("πŸ” Z-IMAGE-TURBO DEBUGGING + LIVE METRIC LOGGER")
log("===================================================\n")

log(f"πŸ“Œ PYTHON VERSION       : {sys.version.replace(chr(10),' ')}")
log(f"πŸ“Œ PLATFORM             : {platform.platform()}")
log(f"πŸ“Œ TORCH VERSION        : {torch.__version__}")
log(f"πŸ“Œ TRANSFORMERS VERSION : {transformers.__version__}")
log(f"πŸ“Œ DIFFUSERS VERSION    : {diffusers.__version__}")
log(f"πŸ“Œ CUDA AVAILABLE       : {torch.cuda.is_available()}")

log_system_stats("AT STARTUP")

if not torch.cuda.is_available():
    raise RuntimeError("❌ CUDA Required")

device = "cuda"
gpu_id = 0

# ============================================================
# MODEL SETTINGS
# ============================================================
model_cache = "./weights/"
model_id = "Tongyi-MAI/Z-Image-Turbo"
torch_dtype = torch.bfloat16
USE_CPU_OFFLOAD = False

log("\n===================================================")
log("🧠 MODEL CONFIGURATION")
log("===================================================")
log(f"Model ID              : {model_id}")
log(f"Model Cache Directory : {model_cache}")
log(f"torch_dtype           : {torch_dtype}")
log(f"USE_CPU_OFFLOAD       : {USE_CPU_OFFLOAD}")

log_system_stats("BEFORE TRANSFORMER LOAD")


# ============================================================
# FUNCTION TO CONVERT LATENTS TO IMAGE
# ============================================================
def latent_to_image(latent):
    try:
        img_tensor = pipe.vae.decode(latent)
        img_tensor = (img_tensor / 2 + 0.5).clamp(0, 1)
        pil_img = T.ToPILImage()(img_tensor[0])
        return pil_img
    except Exception as e:
        log(f"⚠️ Failed to decode latent: {e}")
        return None



# ============================================================
# SAFE TRANSFORMER INSPECTION
# ============================================================
def inspect_transformer(model, name):
    log(f"\nπŸ” Inspecting {name}")
    try:
        candidates = ["transformer_blocks", "blocks", "layers", "encoder", "model"]
        blocks = None

        for attr in candidates:
            if hasattr(model, attr):
                blocks = getattr(model, attr)
                break

        if blocks is None:
            log(f"⚠️ No block structure found in {name}")
            return

        if hasattr(blocks, "__len__"):
            log(f"Total Blocks = {len(blocks)}")
        else:
            log("⚠️ Blocks exist but are not iterable")

        for i in range(min(10, len(blocks) if hasattr(blocks, "__len__") else 0)):
            log(f"Block {i} = {blocks[i].__class__.__name__}")

    except Exception as e:
        log(f"⚠️ Transformer inspect error: {e}")


# ============================================================
# LOAD TRANSFORMER β€” WITH LIVE STATS
# ============================================================
log("\n===================================================")
log("πŸ”§ LOADING TRANSFORMER BLOCK")
log("===================================================")

log("πŸ“Œ Logging memory before load:")
log_system_stats("START TRANSFORMER LOAD")

try:
    quant_cfg = DiffusersBitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch_dtype,
        bnb_4bit_use_double_quant=True,
    )

    transformer = AutoModel.from_pretrained(
        model_id,
        cache_dir=model_cache,
        subfolder="transformer",
        quantization_config=quant_cfg,
        torch_dtype=torch_dtype,
        device_map=device,
    )
    log("βœ… Transformer loaded successfully.")

except Exception as e:
    log(f"❌ Transformer load failed: {e}")
    transformer = None

log_system_stats("AFTER TRANSFORMER LOAD")

if transformer:
    inspect_transformer(transformer, "Transformer")


# ============================================================
# LOAD TEXT ENCODER
# ============================================================
log("\n===================================================")
log("πŸ”§ LOADING TEXT ENCODER")
log("===================================================")

log_system_stats("START TEXT ENCODER LOAD")

try:
    quant_cfg2 = TransformersBitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch_dtype,
        bnb_4bit_use_double_quant=True,
    )

    text_encoder = AutoModel.from_pretrained(
        model_id,
        cache_dir=model_cache,
        subfolder="text_encoder",
        quantization_config=quant_cfg2,
        torch_dtype=torch_dtype,
        device_map=device,
    )
    log("βœ… Text encoder loaded successfully.")

except Exception as e:
    log(f"❌ Text encoder load failed: {e}")
    text_encoder = None

log_system_stats("AFTER TEXT ENCODER LOAD")

if text_encoder:
    inspect_transformer(text_encoder, "Text Encoder")


# ============================================================
# BUILD PIPELINE
# ============================================================
log("\n===================================================")
log("πŸ”§ BUILDING PIPELINE")
log("===================================================")

log_system_stats("START PIPELINE BUILD")

try:
    pipe = ZImagePipeline.from_pretrained(
        model_id,
        transformer=transformer,
        text_encoder=text_encoder,
        torch_dtype=torch_dtype,
    )
    pipe.to(device)
    log("βœ… Pipeline built successfully.")

except Exception as e:
    log(f"❌ Pipeline build failed: {e}")
    pipe = None

log_system_stats("AFTER PIPELINE BUILD")




import torch
from PIL import Image
import io


logs = []
latent_gallery = []

import torch
from PIL import Image

# Global log storage

LOGS = []

def log(msg):
LOGS.append(msg)
print(msg)

@spaces.GPU
def generate_image(prompt, height, width, steps, seed, guidance_scale=0.0, return_latents=False):
"""
Generate an image from a prompt.
Tries advanced latent-based method; falls back to standard pipeline if anything fails.
"""



 try:
    generator = torch.Generator(device).manual_seed(int(seed))

    # Try advanced latent preparation
    try:
        batch_size = 1
        num_channels_latents = getattr(pipe.unet, "in_channels", None)
        if num_channels_latents is None:
            raise AttributeError("pipe.unet.in_channels not found, fallback to standard pipeline")

        latents = pipe.prepare_latents(
            batch_size=batch_size,
            num_channels=num_channels_latents,
            height=height,
            width=width,
            dtype=torch.float32,
            device=device,
            generator=generator
        )
        log(f"βœ… Latents prepared: {latents.shape}")

        # Generate image using prepared latents
        output = pipe(
            prompt=prompt,
            height=height,
            width=width,
            num_inference_steps=steps,
            guidance_scale=guidance_scale,
            generator=generator,
            latents=latents
        )

    except Exception as e_inner:
        # If advanced method fails, fallback to standard pipeline
        log(f"⚠️ Advanced latent method failed: {e_inner}")
        log("πŸ” Falling back to standard pipeline...")
        output = pipe(
            prompt=prompt,
            height=height,
            width=width,
            num_inference_steps=steps,
            guidance_scale=guidance_scale,
            generator=generator
        )

    image = output.images[0]
    log("βœ… Inference finished successfully.")

    if return_latents and 'latents' in locals():
        return image, latents, LOGS
    else:
        return image, LOGS

 except Exception as e:
    log(f"❌ Inference failed entirely: {e}")
    return None, LOGS



# ============================================================
# UI
# ============================================================

with gr.Blocks(title="Z-Image-Turbo Generator") as demo:
  gr.Markdown("# **πŸš€ Z-Image-Turbo β€” Final Image & Latents**")


  with gr.Row():
    with gr.Column(scale=1):
        prompt = gr.Textbox(label="Prompt", value="Realistic mid-aged male image")
        height = gr.Slider(256, 2048, value=1024, step=8, label="Height")
        width = gr.Slider(256, 2048, value=1024, step=8, label="Width")
        steps = gr.Slider(1, 50, value=20, step=1, label="Inference Steps")
        seed = gr.Number(value=42, label="Seed")
        run_btn = gr.Button("Generate Image")

    with gr.Column(scale=1):
        final_image = gr.Image(label="Final Image")
        latent_gallery = gr.Gallery(
           label="Latent Steps",
                columns=4,
              height=256,
             preview=True
              )

        logs_box = gr.Textbox(label="Logs", lines=15)

    run_btn.click(
      generate_image,
      inputs=[prompt, height, width, steps, seed],
      outputs=[final_image, latent_gallery, logs_box]
     )



demo.launch()