File size: 6,204 Bytes
1b8645f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import torch
import spaces
import gradio as gr
from diffusers import DiffusionPipeline
import diffusers
import io
import logging
from transformers import AutoTokenizer, AutoModelForCausalLM

# ------------------------
# GLOBAL LOG BUFFER
# ------------------------
log_buffer = io.StringIO()

def log(msg):
    print(msg)
    log_buffer.write(msg + "\n")

# Enable diffusers debug logs
diffusers.utils.logging.set_verbosity_info()

log("Loading Z-Image-Turbo pipeline...")

# ------------------------
# Load FP8 text encoder + tokenizer
# ------------------------
log("Loading FP8 Qwen3-4B tokenizer + text encoder...")
fp8_tokenizer = AutoTokenizer.from_pretrained(
    "jiangchengchengNLP/qwen3-4b-fp8-scaled"
)
fp8_text_encoder = AutoModelForCausalLM.from_pretrained(
    "jiangchengchengNLP/qwen3-4b-fp8-scaled",
    device_map="auto",
    torch_dtype=torch.bfloat16,  # can replace with torch.float8_e4m3fn if PyTorch nightly supports
)

# ------------------------
# Load Z-Image-Turbo
# ------------------------
pipe = DiffusionPipeline.from_pretrained(
    "Tongyi-MAI/Z-Image-Turbo",
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=False,
    attn_implementation="kernels-community/vllm-flash-attn3",
)

# Inject FP8 tokenizer + text encoder
pipe.tokenizer = fp8_tokenizer
pipe.text_encoder = fp8_text_encoder
pipe.to("cuda")

# ------------------------
# Pipeline debug info
# ------------------------
def pipeline_debug_info(pipe):
    info = []
    info.append("=== PIPELINE DEBUG INFO ===")

    try:
        tr = pipe.transformer.config
        info.append(f"Transformer Class: {pipe.transformer.__class__.__name__}")
        # Z-Image-Turbo keys
        info.append(f"Hidden dim: {tr.get('hidden_dim')}")
        info.append(f"Attention heads: {tr.get('num_heads')}")
        info.append(f"Depth (layers): {tr.get('depth')}")
        info.append(f"Patch size: {tr.get('patch_size')}")
        info.append(f"MLP ratio: {tr.get('mlp_ratio')}")
        info.append(f"Attention backend: {tr.get('attn_implementation')}")
    except Exception as e:
        info.append(f"Transformer diagnostics failed: {e}")

    # VAE info
    try:
        vae = pipe.vae.config
        info.append(f"VAE latent channels: {vae.latent_channels}")
        info.append(f"VAE scaling factor: {vae.scaling_factor}")
    except Exception as e:
        info.append(f"VAE diagnostics failed: {e}")

    return "\n".join(info)


def latent_shape_info(h, w, pipe):
    try:
        c = pipe.vae.config.latent_channels
        s = pipe.vae.config.scaling_factor
        h_lat = int(h * s)
        w_lat = int(w * s)
        return f"Latent shape β†’ ({c}, {h_lat}, {w_lat})"
    except Exception as e:
        return f"Latent shape calc failed: {e}"


# ------------------------
# IMAGE GENERATOR
# ------------------------
@spaces.GPU
def generate_image(prompt, height, width, num_inference_steps, seed, randomize_seed, num_images):
    log_buffer.truncate(0)
    log_buffer.seek(0)

    log("=== NEW GENERATION REQUEST ===")
    log(f"Prompt: {prompt}")
    log(f"Height: {height}, Width: {width}")
    log(f"Inference Steps: {num_inference_steps}")
    log(f"Num Images: {num_images}")

    if randomize_seed:
        seed = torch.randint(0, 2**32 - 1, (1,)).item()
        log(f"Randomized Seed β†’ {seed}")
    else:
        log(f"Seed: {seed}")

    num_images = min(max(1, int(num_images)), 3)

    # Debug pipeline info
    log(pipeline_debug_info(pipe))

    generator = torch.Generator("cuda").manual_seed(int(seed))

    log("Running pipeline forward()...")
    result = pipe(
        prompt=prompt,
        height=int(height),
        width=int(width),
        num_inference_steps=int(num_inference_steps),
        guidance_scale=0.0,
        generator=generator,
        max_sequence_length=1024,
        num_images_per_prompt=num_images,
        output_type="pil",
    )

    # Tensor diagnostics (shapes only)
    try:
        log(f"VAE latent channels: {pipe.vae.config.latent_channels}")
        log(f"VAE scaling factor: {pipe.vae.config.scaling_factor}")
        log(latent_shape_info(height, width, pipe))
    except Exception as e:
        log(f"Latent diagnostics error: {e}")

    log("Pipeline finished.")
    log("Returning images...")

    return result.images, seed, log_buffer.getvalue()


# ------------------------
# GRADIO UI
# ------------------------
examples = [
    ["Young Chinese woman in red Hanfu, intricate embroidery..."],
    ["A majestic dragon soaring through clouds at sunset..."],
    ["Cozy coffee shop interior, warm lighting, rain on windows..."],
    ["Astronaut riding a horse on Mars, cinematic lighting..."],
    ["Portrait of a wise old wizard..."],
]

with gr.Blocks(title="Z-Image-Turbo Multi Image Demo") as demo:
    gr.Markdown("# 🎨 Z-Image-Turbo β€” Multi Image ")

    with gr.Row():
        with gr.Column(scale=1):
            prompt = gr.Textbox(label="Prompt", lines=4)

            with gr.Row():
                height = gr.Slider(512, 2048, 1024, step=64, label="Height")
                width = gr.Slider(512, 2048, 1024, step=64, label="Width")

            num_images = gr.Slider(1, 3, 2, step=1, label="Number of Images")

            num_inference_steps = gr.Slider(
                1, 20, 9, step=1, label="Inference Steps",
                info="9 steps = 8 DiT forward passes",
            )

            with gr.Row():
                seed = gr.Number(label="Seed", value=42, precision=0)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=False)

            generate_btn = gr.Button("πŸš€ Generate", variant="primary")

        with gr.Column(scale=1):
            output_images = gr.Gallery(label="Generated Images")
            used_seed = gr.Number(label="Seed Used", interactive=False)
            debug_log = gr.Textbox(label="Debug Log Output", lines=25, interactive=False)

    gr.Examples(examples=examples, inputs=[prompt], cache_examples=False)

    generate_btn.click(
        fn=generate_image,
        inputs=[prompt, height, width, num_inference_steps, seed, randomize_seed, num_images],
        outputs=[output_images, used_seed, debug_log],
    )

if __name__ == "__main__":
    demo.launch()