Spaces:
Paused
Paused
File size: 6,204 Bytes
1b8645f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import torch
import spaces
import gradio as gr
from diffusers import DiffusionPipeline
import diffusers
import io
import logging
from transformers import AutoTokenizer, AutoModelForCausalLM
# ------------------------
# GLOBAL LOG BUFFER
# ------------------------
log_buffer = io.StringIO()
def log(msg):
print(msg)
log_buffer.write(msg + "\n")
# Enable diffusers debug logs
diffusers.utils.logging.set_verbosity_info()
log("Loading Z-Image-Turbo pipeline...")
# ------------------------
# Load FP8 text encoder + tokenizer
# ------------------------
log("Loading FP8 Qwen3-4B tokenizer + text encoder...")
fp8_tokenizer = AutoTokenizer.from_pretrained(
"jiangchengchengNLP/qwen3-4b-fp8-scaled"
)
fp8_text_encoder = AutoModelForCausalLM.from_pretrained(
"jiangchengchengNLP/qwen3-4b-fp8-scaled",
device_map="auto",
torch_dtype=torch.bfloat16, # can replace with torch.float8_e4m3fn if PyTorch nightly supports
)
# ------------------------
# Load Z-Image-Turbo
# ------------------------
pipe = DiffusionPipeline.from_pretrained(
"Tongyi-MAI/Z-Image-Turbo",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=False,
attn_implementation="kernels-community/vllm-flash-attn3",
)
# Inject FP8 tokenizer + text encoder
pipe.tokenizer = fp8_tokenizer
pipe.text_encoder = fp8_text_encoder
pipe.to("cuda")
# ------------------------
# Pipeline debug info
# ------------------------
def pipeline_debug_info(pipe):
info = []
info.append("=== PIPELINE DEBUG INFO ===")
try:
tr = pipe.transformer.config
info.append(f"Transformer Class: {pipe.transformer.__class__.__name__}")
# Z-Image-Turbo keys
info.append(f"Hidden dim: {tr.get('hidden_dim')}")
info.append(f"Attention heads: {tr.get('num_heads')}")
info.append(f"Depth (layers): {tr.get('depth')}")
info.append(f"Patch size: {tr.get('patch_size')}")
info.append(f"MLP ratio: {tr.get('mlp_ratio')}")
info.append(f"Attention backend: {tr.get('attn_implementation')}")
except Exception as e:
info.append(f"Transformer diagnostics failed: {e}")
# VAE info
try:
vae = pipe.vae.config
info.append(f"VAE latent channels: {vae.latent_channels}")
info.append(f"VAE scaling factor: {vae.scaling_factor}")
except Exception as e:
info.append(f"VAE diagnostics failed: {e}")
return "\n".join(info)
def latent_shape_info(h, w, pipe):
try:
c = pipe.vae.config.latent_channels
s = pipe.vae.config.scaling_factor
h_lat = int(h * s)
w_lat = int(w * s)
return f"Latent shape β ({c}, {h_lat}, {w_lat})"
except Exception as e:
return f"Latent shape calc failed: {e}"
# ------------------------
# IMAGE GENERATOR
# ------------------------
@spaces.GPU
def generate_image(prompt, height, width, num_inference_steps, seed, randomize_seed, num_images):
log_buffer.truncate(0)
log_buffer.seek(0)
log("=== NEW GENERATION REQUEST ===")
log(f"Prompt: {prompt}")
log(f"Height: {height}, Width: {width}")
log(f"Inference Steps: {num_inference_steps}")
log(f"Num Images: {num_images}")
if randomize_seed:
seed = torch.randint(0, 2**32 - 1, (1,)).item()
log(f"Randomized Seed β {seed}")
else:
log(f"Seed: {seed}")
num_images = min(max(1, int(num_images)), 3)
# Debug pipeline info
log(pipeline_debug_info(pipe))
generator = torch.Generator("cuda").manual_seed(int(seed))
log("Running pipeline forward()...")
result = pipe(
prompt=prompt,
height=int(height),
width=int(width),
num_inference_steps=int(num_inference_steps),
guidance_scale=0.0,
generator=generator,
max_sequence_length=1024,
num_images_per_prompt=num_images,
output_type="pil",
)
# Tensor diagnostics (shapes only)
try:
log(f"VAE latent channels: {pipe.vae.config.latent_channels}")
log(f"VAE scaling factor: {pipe.vae.config.scaling_factor}")
log(latent_shape_info(height, width, pipe))
except Exception as e:
log(f"Latent diagnostics error: {e}")
log("Pipeline finished.")
log("Returning images...")
return result.images, seed, log_buffer.getvalue()
# ------------------------
# GRADIO UI
# ------------------------
examples = [
["Young Chinese woman in red Hanfu, intricate embroidery..."],
["A majestic dragon soaring through clouds at sunset..."],
["Cozy coffee shop interior, warm lighting, rain on windows..."],
["Astronaut riding a horse on Mars, cinematic lighting..."],
["Portrait of a wise old wizard..."],
]
with gr.Blocks(title="Z-Image-Turbo Multi Image Demo") as demo:
gr.Markdown("# π¨ Z-Image-Turbo β Multi Image ")
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label="Prompt", lines=4)
with gr.Row():
height = gr.Slider(512, 2048, 1024, step=64, label="Height")
width = gr.Slider(512, 2048, 1024, step=64, label="Width")
num_images = gr.Slider(1, 3, 2, step=1, label="Number of Images")
num_inference_steps = gr.Slider(
1, 20, 9, step=1, label="Inference Steps",
info="9 steps = 8 DiT forward passes",
)
with gr.Row():
seed = gr.Number(label="Seed", value=42, precision=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=False)
generate_btn = gr.Button("π Generate", variant="primary")
with gr.Column(scale=1):
output_images = gr.Gallery(label="Generated Images")
used_seed = gr.Number(label="Seed Used", interactive=False)
debug_log = gr.Textbox(label="Debug Log Output", lines=25, interactive=False)
gr.Examples(examples=examples, inputs=[prompt], cache_examples=False)
generate_btn.click(
fn=generate_image,
inputs=[prompt, height, width, num_inference_steps, seed, randomize_seed, num_images],
outputs=[output_images, used_seed, debug_log],
)
if __name__ == "__main__":
demo.launch()
|