Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,923 Bytes
1b8645f dc103ee 1b8645f 5ecec1f dc103ee 5ecec1f dc103ee 1b8645f dc103ee 1b8645f dc103ee 6857708 1b8645f 5ecec1f 1b8645f 6857708 1b8645f dc103ee 1b8645f dc103ee 1b8645f dc103ee 1b8645f 6857708 1b8645f dc103ee 6857708 1b8645f 6857708 1b8645f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import torch
import spaces
import gradio as gr
from diffusers import DiffusionPipeline
from transformers import pipeline
import diffusers
import io
# ------------------------
# GLOBAL LOG BUFFER
# ------------------------
log_buffer = io.StringIO()
def log(msg):
print(msg)
log_buffer.write(msg + "\n")
# Enable diffusers debug logs
diffusers.utils.logging.set_verbosity_info()
# ------------------------
# LOAD PIPELINES
# ------------------------
log("Loading Z-Image-Turbo pipeline...")
pipe = DiffusionPipeline.from_pretrained(
"Tongyi-MAI/Z-Image-Turbo",
dtype=torch.bfloat16,
low_cpu_mem_usage=False,
attn_implementation="kernels-community/vllm-flash-attn3",
)
pipe.to("cuda")
log("Loading FP8 text encoder: Qwen/Qwen3-4B...")
fp8_encoder = pipeline("text-generation", model="Qwen/Qwen3-4B", device=0) # device=0 β CUDA
# ------------------------
# PIPELINE DEBUG INFO
# ------------------------
def pipeline_debug_info(pipe):
info = ["=== PIPELINE DEBUG INFO ==="]
try:
tr = pipe.transformer.config
info.append(f"Transformer Class: {pipe.transformer.__class__.__name__}")
info.append(f"Hidden dim: {tr.get('hidden_dim')}")
info.append(f"Attention heads: {tr.get('num_heads')}")
info.append(f"Depth (layers): {tr.get('depth')}")
info.append(f"Patch size: {tr.get('patch_size')}")
info.append(f"MLP ratio: {tr.get('mlp_ratio')}")
info.append(f"Attention backend: {tr.get('attn_implementation')}")
except Exception as e:
info.append(f"Transformer diagnostics failed: {e}")
try:
vae = pipe.vae.config
info.append(f"VAE latent channels: {vae.latent_channels}")
info.append(f"VAE scaling factor: {vae.scaling_factor}")
except Exception as e:
info.append(f"VAE diagnostics failed: {e}")
return "\n".join(info)
def latent_shape_info(h, w, pipe):
try:
c = pipe.vae.config.latent_channels
s = pipe.vae.config.scaling_factor
h_lat = int(h * s)
w_lat = int(w * s)
return f"Latent shape β ({c}, {h_lat}, {w_lat})"
except Exception as e:
return f"Latent shape calc failed: {e}"
# ------------------------
# IMAGE GENERATION
# ------------------------
@spaces.GPU
def generate_image(prompt, height, width, num_inference_steps, seed, randomize_seed, num_images):
log_buffer.truncate(0)
log_buffer.seek(0)
log("=== NEW GENERATION REQUEST ===")
log(f"Prompt: {prompt}")
log(f"Height: {height}, Width: {width}")
log(f"Inference Steps: {num_inference_steps}")
log(f"Num Images: {num_images}")
if randomize_seed:
seed = torch.randint(0, 2**32 - 1, (1,)).item()
log(f"Randomized Seed β {seed}")
else:
log(f"Seed: {seed}")
# Clamp images to 1β3
num_images = min(max(1, int(num_images)), 3)
# Run FP8 text encoder first
log("Encoding prompt with FP8 text encoder...")
encoded_prompt = fp8_encoder([{"role": "user", "content": prompt}])
log(f"FP8 encoding output: {encoded_prompt}")
# Debug pipeline info
log(pipeline_debug_info(pipe))
generator = torch.Generator("cuda").manual_seed(int(seed))
log("Running Z-Image-Turbo pipeline forward()...")
result = pipe(
prompt=prompt,
height=int(height),
width=int(width),
num_inference_steps=int(num_inference_steps),
guidance_scale=0.0,
generator=generator,
max_sequence_length=1024,
num_images_per_prompt=num_images,
output_type="pil",
)
# Latent diagnostics
try:
log(f"VAE latent channels: {pipe.vae.config.latent_channels}")
log(f"VAE scaling factor: {pipe.vae.config.scaling_factor}")
log(latent_shape_info(height, width, pipe))
except Exception as e:
log(f"Latent diagnostics error: {e}")
log("Pipeline finished.")
log("Returning images...")
return result.images, seed, log_buffer.getvalue()
# ------------------------
# GRADIO UI
# ------------------------
examples = [
["Young Chinese woman in red Hanfu, intricate embroidery..."],
["A majestic dragon soaring through clouds at sunset..."],
["Cozy coffee shop interior, warm lighting, rain on windows..."],
["Astronaut riding a horse on Mars, cinematic lighting..."],
["Portrait of a wise old wizard..."],
]
with gr.Blocks(title="Z-Image-Turbo Multi Image Demo") as demo:
gr.Markdown("# π¨ Z-Image-Turbo β Multi Image (FP8 Text Encoder)")
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label="Prompt", lines=4)
with gr.Row():
height = gr.Slider(512, 2048, 1024, step=64, label="Height")
width = gr.Slider(512, 2048, 1024, step=64, label="Width")
num_images = gr.Slider(1, 3, 2, step=1, label="Number of Images")
num_inference_steps = gr.Slider(
1, 20, 9, step=1, label="Inference Steps",
info="9 steps = 8 DiT forward passes",
)
with gr.Row():
seed = gr.Number(label="Seed", value=42, precision=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=False)
generate_btn = gr.Button("π Generate", variant="primary")
with gr.Column(scale=1):
output_images = gr.Gallery(label="Generated Images", type="pil")
used_seed = gr.Number(label="Seed Used", interactive=False)
debug_log = gr.Textbox(label="Debug Log Output", lines=25, interactive=False)
gr.Examples(examples=examples, inputs=[prompt], cache_examples=False)
generate_btn.click(
fn=generate_image,
inputs=[prompt, height, width, num_inference_steps, seed, randomize_seed, num_images],
outputs=[output_images, used_seed, debug_log],
)
if __name__ == "__main__":
demo.launch()
|