Image2Video / app1.py
rahul7star's picture
Update app1.py
5ecec1f verified
raw
history blame
6.08 kB
import torch
import spaces
import gradio as gr
from diffusers import DiffusionPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer
import diffusers
import io
# ------------------------
# GLOBAL LOG BUFFER
# ------------------------
log_buffer = io.StringIO()
def log(msg):
print(msg)
log_buffer.write(msg + "\n")
# Enable diffusers debug logs
diffusers.utils.logging.set_verbosity_info()
log("Loading Z-Image-Turbo pipeline...")
# ------------------------
# Load FP8 text encoder
# ------------------------
log("Loading FP8 text encoder: Qwen/Qwen3-VL-2B-Instruct-FP8...")
fp8_model_name = "Qwen/Qwen3-VL-2B-Instruct-FP8"
fp8_tokenizer = AutoTokenizer.from_pretrained(fp8_model_name)
fp8_encoder = AutoModelForCausalLM.from_pretrained(fp8_model_name, torch_dtype=torch.bfloat16)
fp8_encoder.to("cuda")
# ------------------------
# Load main diffusion pipeline
# ------------------------
pipe = DiffusionPipeline.from_pretrained(
"Tongyi-MAI/Z-Image-Turbo",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=False,
attn_implementation="kernels-community/vllm-flash-attn3",
text_encoder=fp8_encoder, # swap in FP8 encoder
tokenizer=fp8_tokenizer, # swap tokenizer
)
pipe.to("cuda")
# ------------------------
# PIPELINE DEBUG INFO
# ------------------------
def pipeline_debug_info(pipe):
info = ["=== PIPELINE DEBUG INFO ==="]
try:
tr = pipe.transformer.config
info.append(f"Transformer Class: {pipe.transformer.__class__.__name__}")
info.append(f"Hidden dim: {tr.get('hidden_dim')}")
info.append(f"Attention heads: {tr.get('num_heads')}")
info.append(f"Depth (layers): {tr.get('depth')}")
info.append(f"Patch size: {tr.get('patch_size')}")
info.append(f"MLP ratio: {tr.get('mlp_ratio')}")
info.append(f"Attention backend: {tr.get('attn_implementation')}")
except Exception as e:
info.append(f"Transformer diagnostics failed: {e}")
try:
vae = pipe.vae.config
info.append(f"VAE latent channels: {vae.latent_channels}")
info.append(f"VAE scaling factor: {vae.scaling_factor}")
except Exception as e:
info.append(f"VAE diagnostics failed: {e}")
return "\n".join(info)
def latent_shape_info(h, w, pipe):
try:
c = pipe.vae.config.latent_channels
s = pipe.vae.config.scaling_factor
h_lat = int(h * s)
w_lat = int(w * s)
return f"Latent shape β†’ ({c}, {h_lat}, {w_lat})"
except Exception as e:
return f"Latent shape calc failed: {e}"
# ------------------------
# IMAGE GENERATION
# ------------------------
@spaces.GPU
def generate_image(prompt, height, width, num_inference_steps, seed, randomize_seed, num_images):
log_buffer.truncate(0)
log_buffer.seek(0)
log("=== NEW GENERATION REQUEST ===")
log(f"Prompt: {prompt}")
log(f"Height: {height}, Width: {width}")
log(f"Inference Steps: {num_inference_steps}")
log(f"Num Images: {num_images}")
if randomize_seed:
seed = torch.randint(0, 2**32 - 1, (1,)).item()
log(f"Randomized Seed β†’ {seed}")
else:
log(f"Seed: {seed}")
num_images = min(max(1, int(num_images)), 3)
# Pipeline debug info
log(pipeline_debug_info(pipe))
generator = torch.Generator("cuda").manual_seed(int(seed))
log("Running pipeline forward()...")
result = pipe(
prompt=prompt,
height=int(height),
width=int(width),
num_inference_steps=int(num_inference_steps),
guidance_scale=0.0,
generator=generator,
max_sequence_length=1024,
num_images_per_prompt=num_images,
output_type="pil",
)
# Latent diagnostics
try:
log(f"VAE latent channels: {pipe.vae.config.latent_channels}")
log(f"VAE scaling factor: {pipe.vae.config.scaling_factor}")
log(latent_shape_info(height, width, pipe))
except Exception as e:
log(f"Latent diagnostics error: {e}")
log("Pipeline finished.")
log("Returning images...")
return result.images, seed, log_buffer.getvalue()
# ------------------------
# GRADIO UI
# ------------------------
examples = [
["Young Chinese woman in red Hanfu, intricate embroidery..."],
["A majestic dragon soaring through clouds at sunset..."],
["Cozy coffee shop interior, warm lighting, rain on windows..."],
["Astronaut riding a horse on Mars, cinematic lighting..."],
["Portrait of a wise old wizard..."],
]
with gr.Blocks(title="Z-Image-Turbo Multi Image Demo (FP8 Text Encoder)") as demo:
gr.Markdown("# 🎨 Z-Image-Turbo β€” Multi Image (FP8 Text Encoder)")
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label="Prompt", lines=4)
with gr.Row():
height = gr.Slider(512, 2048, 1024, step=64, label="Height")
width = gr.Slider(512, 2048, 1024, step=64, label="Width")
num_images = gr.Slider(1, 3, 2, step=1, label="Number of Images")
num_inference_steps = gr.Slider(
1, 20, 9, step=1, label="Inference Steps",
info="9 steps = 8 DiT forward passes",
)
with gr.Row():
seed = gr.Number(label="Seed", value=42, precision=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=False)
generate_btn = gr.Button("πŸš€ Generate", variant="primary")
with gr.Column(scale=1):
output_images = gr.Gallery(label="Generated Images", type="pil")
used_seed = gr.Number(label="Seed Used", interactive=False)
debug_log = gr.Textbox(label="Debug Log Output", lines=25, interactive=False)
gr.Examples(examples=examples, inputs=[prompt], cache_examples=False)
generate_btn.click(
fn=generate_image,
inputs=[prompt, height, width, num_inference_steps, seed, randomize_seed, num_images],
outputs=[output_images, used_seed, debug_log],
)
if __name__ == "__main__":
demo.launch()