Spaces:
Running
on
Zero
Running
on
Zero
Create app_quant_latent.py
Browse files- app_quant_latent.py +304 -0
app_quant_latent.py
ADDED
|
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import spaces
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import sys
|
| 5 |
+
import platform
|
| 6 |
+
import diffusers
|
| 7 |
+
import transformers
|
| 8 |
+
import os
|
| 9 |
+
import torchvision.transforms as T
|
| 10 |
+
|
| 11 |
+
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
|
| 12 |
+
from diffusers import ZImagePipeline, AutoModel
|
| 13 |
+
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
|
| 14 |
+
|
| 15 |
+
# ============================================================
|
| 16 |
+
|
| 17 |
+
# LOGGING BUFFER
|
| 18 |
+
|
| 19 |
+
# ============================================================
|
| 20 |
+
|
| 21 |
+
LOGS = ""
|
| 22 |
+
def log(msg):
|
| 23 |
+
global LOGS
|
| 24 |
+
print(msg)
|
| 25 |
+
LOGS += msg + "\n"
|
| 26 |
+
return msg
|
| 27 |
+
|
| 28 |
+
# ============================================================
|
| 29 |
+
|
| 30 |
+
# ENVIRONMENT INFO
|
| 31 |
+
|
| 32 |
+
# ============================================================
|
| 33 |
+
|
| 34 |
+
log("===================================================")
|
| 35 |
+
log("π Z-IMAGE-TURBO DEBUGGING + ROBUST TRANSFORMER INSPECTION")
|
| 36 |
+
log("===================================================\n")
|
| 37 |
+
|
| 38 |
+
log(f"π PYTHON VERSION : {sys.version.replace(chr(10), ' ')}")
|
| 39 |
+
log(f"π PLATFORM : {platform.platform()}")
|
| 40 |
+
log(f"π TORCH VERSION : {torch.**version**}")
|
| 41 |
+
log(f"π TRANSFORMERS VERSION : {transformers.**version**}")
|
| 42 |
+
log(f"π DIFFUSERS VERSION : {diffusers.**version**}")
|
| 43 |
+
log(f"π CUDA AVAILABLE : {torch.cuda.is_available()}")
|
| 44 |
+
|
| 45 |
+
if torch.cuda.is_available():
|
| 46 |
+
log(f"π GPU NAME : {torch.cuda.get_device_name(0)}")
|
| 47 |
+
log(f"π GPU CAPABILITY : {torch.cuda.get_device_capability(0)}")
|
| 48 |
+
log(f"π GPU MEMORY (TOTAL) : {torch.cuda.get_device_properties(0).total_memory/1e9:.2f} GB")
|
| 49 |
+
log(f"π FLASH ATTENTION : {torch.backends.cuda.flash_sdp_enabled()}")
|
| 50 |
+
else:
|
| 51 |
+
raise RuntimeError("β CUDA is REQUIRED but not available.")
|
| 52 |
+
|
| 53 |
+
device = "cuda"
|
| 54 |
+
gpu_id = 0
|
| 55 |
+
|
| 56 |
+
# ============================================================
|
| 57 |
+
|
| 58 |
+
# MODEL SETTINGS
|
| 59 |
+
|
| 60 |
+
# ============================================================
|
| 61 |
+
|
| 62 |
+
model_cache = "./weights/"
|
| 63 |
+
model_id = "Tongyi-MAI/Z-Image-Turbo"
|
| 64 |
+
torch_dtype = torch.bfloat16
|
| 65 |
+
USE_CPU_OFFLOAD = False
|
| 66 |
+
|
| 67 |
+
log("\n===================================================")
|
| 68 |
+
log("π§ MODEL CONFIGURATION")
|
| 69 |
+
log("===================================================")
|
| 70 |
+
log(f"Model ID : {model_id}")
|
| 71 |
+
log(f"Model Cache Directory : {model_cache}")
|
| 72 |
+
log(f"torch_dtype : {torch_dtype}")
|
| 73 |
+
log(f"USE_CPU_OFFLOAD : {USE_CPU_OFFLOAD}")
|
| 74 |
+
|
| 75 |
+
# ============================================================
|
| 76 |
+
|
| 77 |
+
# ROBUST TRANSFORMER INSPECTION FUNCTION
|
| 78 |
+
|
| 79 |
+
# ============================================================
|
| 80 |
+
|
| 81 |
+
def inspect_transformer(model, model_name="Transformer"):
|
| 82 |
+
log(f"\nπ {model_name} Architecture Details:")
|
| 83 |
+
try:
|
| 84 |
+
block_attrs = ["transformer_blocks", "blocks", "layers", "encoder_blocks", "model"]
|
| 85 |
+
blocks = None
|
| 86 |
+
for attr in block_attrs:
|
| 87 |
+
blocks = getattr(model, attr, None)
|
| 88 |
+
if blocks is not None:
|
| 89 |
+
break
|
| 90 |
+
|
| 91 |
+
```
|
| 92 |
+
if blocks is None:
|
| 93 |
+
log(f"β οΈ Could not find transformer blocks in {model_name}, skipping detailed block info")
|
| 94 |
+
else:
|
| 95 |
+
try:
|
| 96 |
+
log(f"Number of Transformer Modules : {len(blocks)}")
|
| 97 |
+
for i, block in enumerate(blocks):
|
| 98 |
+
log(f" Block {i}: {block.__class__.__name__}")
|
| 99 |
+
attn_type = getattr(block, "attn", None)
|
| 100 |
+
if attn_type:
|
| 101 |
+
log(f" Attention: {attn_type.__class__.__name__}")
|
| 102 |
+
flash_enabled = getattr(attn_type, "flash", None)
|
| 103 |
+
log(f" FlashAttention Enabled? : {flash_enabled}")
|
| 104 |
+
except Exception as e:
|
| 105 |
+
log(f"β οΈ Error inspecting blocks: {e}")
|
| 106 |
+
|
| 107 |
+
config = getattr(model, "config", None)
|
| 108 |
+
if config:
|
| 109 |
+
log(f"Hidden size: {getattr(config, 'hidden_size', 'N/A')}")
|
| 110 |
+
log(f"Number of attention heads: {getattr(config, 'num_attention_heads', 'N/A')}")
|
| 111 |
+
log(f"Number of layers: {getattr(config, 'num_hidden_layers', 'N/A')}")
|
| 112 |
+
log(f"Intermediate size: {getattr(config, 'intermediate_size', 'N/A')}")
|
| 113 |
+
else:
|
| 114 |
+
log(f"β οΈ No config attribute found in {model_name}")
|
| 115 |
+
except Exception as e:
|
| 116 |
+
log(f"β οΈ Failed to inspect {model_name}: {e}")
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
# ============================================================
|
| 120 |
+
|
| 121 |
+
# LOAD TRANSFORMER BLOCK
|
| 122 |
+
|
| 123 |
+
# ============================================================
|
| 124 |
+
|
| 125 |
+
log("\n===================================================")
|
| 126 |
+
log("π§ LOADING TRANSFORMER BLOCK")
|
| 127 |
+
log("===================================================")
|
| 128 |
+
|
| 129 |
+
quantization_config = DiffusersBitsAndBytesConfig(
|
| 130 |
+
load_in_4bit=True,
|
| 131 |
+
bnb_4bit_quant_type="nf4",
|
| 132 |
+
bnb_4bit_compute_dtype=torch_dtype,
|
| 133 |
+
bnb_4bit_use_double_quant=True,
|
| 134 |
+
llm_int8_skip_modules=["transformer_blocks.0.img_mod"],
|
| 135 |
+
)
|
| 136 |
+
log("4-bit Quantization Config (Transformer):")
|
| 137 |
+
log(str(quantization_config))
|
| 138 |
+
|
| 139 |
+
transformer = AutoModel.from_pretrained(
|
| 140 |
+
model_id,
|
| 141 |
+
cache_dir=model_cache,
|
| 142 |
+
subfolder="transformer",
|
| 143 |
+
quantization_config=quantization_config,
|
| 144 |
+
torch_dtype=torch_dtype,
|
| 145 |
+
device_map=device,
|
| 146 |
+
)
|
| 147 |
+
log("β
Transformer block loaded successfully.")
|
| 148 |
+
inspect_transformer(transformer, "Transformer")
|
| 149 |
+
|
| 150 |
+
if USE_CPU_OFFLOAD:
|
| 151 |
+
transformer = transformer.to("cpu")
|
| 152 |
+
|
| 153 |
+
# ============================================================
|
| 154 |
+
|
| 155 |
+
# LOAD TEXT ENCODER
|
| 156 |
+
|
| 157 |
+
# ============================================================
|
| 158 |
+
|
| 159 |
+
log("\n===================================================")
|
| 160 |
+
log("π§ LOADING TEXT ENCODER")
|
| 161 |
+
log("===================================================")
|
| 162 |
+
|
| 163 |
+
quantization_config = TransformersBitsAndBytesConfig(
|
| 164 |
+
load_in_4bit=True,
|
| 165 |
+
bnb_4bit_quant_type="nf4",
|
| 166 |
+
bnb_4bit_compute_dtype=torch_dtype,
|
| 167 |
+
bnb_4bit_use_double_quant=True,
|
| 168 |
+
)
|
| 169 |
+
log("4-bit Quantization Config (Text Encoder):")
|
| 170 |
+
log(str(quantization_config))
|
| 171 |
+
|
| 172 |
+
text_encoder = AutoModel.from_pretrained(
|
| 173 |
+
model_id,
|
| 174 |
+
cache_dir=model_cache,
|
| 175 |
+
subfolder="text_encoder",
|
| 176 |
+
quantization_config=quantization_config,
|
| 177 |
+
torch_dtype=torch_dtype,
|
| 178 |
+
device_map=device,
|
| 179 |
+
)
|
| 180 |
+
log("β
Text encoder loaded successfully.")
|
| 181 |
+
inspect_transformer(text_encoder, "Text Encoder")
|
| 182 |
+
|
| 183 |
+
if USE_CPU_OFFLOAD:
|
| 184 |
+
text_encoder = text_encoder.to("cpu")
|
| 185 |
+
|
| 186 |
+
# ============================================================
|
| 187 |
+
|
| 188 |
+
# BUILD PIPELINE
|
| 189 |
+
|
| 190 |
+
# ============================================================
|
| 191 |
+
|
| 192 |
+
log("\n===================================================")
|
| 193 |
+
log("π§ BUILDING Z-IMAGE-TURBO PIPELINE")
|
| 194 |
+
log("===================================================")
|
| 195 |
+
|
| 196 |
+
pipe = ZImagePipeline.from_pretrained(
|
| 197 |
+
model_id,
|
| 198 |
+
transformer=transformer,
|
| 199 |
+
text_encoder=text_encoder,
|
| 200 |
+
torch_dtype=torch_dtype,
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
if USE_CPU_OFFLOAD:
|
| 204 |
+
pipe.enable_model_cpu_offload(gpu_id=gpu_id)
|
| 205 |
+
log("β CPU OFFLOAD ENABLED")
|
| 206 |
+
else:
|
| 207 |
+
pipe.to(device)
|
| 208 |
+
log("β Pipeline moved to GPU")
|
| 209 |
+
|
| 210 |
+
log("β
Pipeline ready.")
|
| 211 |
+
|
| 212 |
+
# ============================================================
|
| 213 |
+
|
| 214 |
+
# FUNCTION TO CONVERT LATENTS TO IMAGE
|
| 215 |
+
|
| 216 |
+
# ============================================================
|
| 217 |
+
|
| 218 |
+
def latent_to_image(latent):
|
| 219 |
+
try:
|
| 220 |
+
img_tensor = pipe.vae.decode(latent)
|
| 221 |
+
img_tensor = (img_tensor / 2 + 0.5).clamp(0, 1)
|
| 222 |
+
pil_img = T.ToPILImage()(img_tensor[0])
|
| 223 |
+
return pil_img
|
| 224 |
+
except Exception as e:
|
| 225 |
+
log(f"β οΈ Failed to decode latent: {e}")
|
| 226 |
+
return None
|
| 227 |
+
|
| 228 |
+
# ============================================================
|
| 229 |
+
|
| 230 |
+
# REAL-TIME INFERENCE FUNCTION
|
| 231 |
+
|
| 232 |
+
# ============================================================
|
| 233 |
+
|
| 234 |
+
@spaces.GPU
|
| 235 |
+
def generate_image_realtime(prompt, height, width, steps, seed):
|
| 236 |
+
global LOGS
|
| 237 |
+
LOGS = ""
|
| 238 |
+
log("===================================================")
|
| 239 |
+
log("π¨ RUNNING REAL-TIME INFERENCE")
|
| 240 |
+
log("===================================================")
|
| 241 |
+
log(f"Prompt : {prompt}")
|
| 242 |
+
log(f"Resolution : {width} x {height}")
|
| 243 |
+
log(f"Steps : {steps}")
|
| 244 |
+
log(f"Seed : {seed}")
|
| 245 |
+
|
| 246 |
+
```
|
| 247 |
+
generator = torch.Generator(device).manual_seed(seed)
|
| 248 |
+
latent_history = []
|
| 249 |
+
|
| 250 |
+
# Define callback to save latents and GPU info
|
| 251 |
+
def save_latents(step, timestep, latents):
|
| 252 |
+
latent_history.append(latents.detach().clone())
|
| 253 |
+
gpu_mem = torch.cuda.memory_allocated(0)/1e9
|
| 254 |
+
log(f"Step {step} - GPU Memory Used: {gpu_mem:.2f} GB")
|
| 255 |
+
|
| 256 |
+
# Yield images step-by-step
|
| 257 |
+
for step, img in pipe(
|
| 258 |
+
prompt=prompt,
|
| 259 |
+
height=height,
|
| 260 |
+
width=width,
|
| 261 |
+
num_inference_steps=steps,
|
| 262 |
+
guidance_scale=0.0,
|
| 263 |
+
generator=generator,
|
| 264 |
+
callback=save_latents,
|
| 265 |
+
callback_steps=1
|
| 266 |
+
).iter():
|
| 267 |
+
# Decode current latent for live preview
|
| 268 |
+
current_latent = latent_history[-1] if latent_history else None
|
| 269 |
+
latent_images = [latent_to_image(l) for l in latent_history if l is not None]
|
| 270 |
+
yield img, latent_images, LOGS
|
| 271 |
+
```
|
| 272 |
+
|
| 273 |
+
# ============================================================
|
| 274 |
+
|
| 275 |
+
# GRADIO UI
|
| 276 |
+
|
| 277 |
+
# ============================================================
|
| 278 |
+
|
| 279 |
+
with gr.Blocks(title="Z-Image-Turbo Generator") as demo:
|
| 280 |
+
gr.Markdown("# **π Z-Image-Turbo β4bit Quant + Real-Time Latent & Transformer Logs**")
|
| 281 |
+
|
| 282 |
+
```
|
| 283 |
+
with gr.Row():
|
| 284 |
+
with gr.Column(scale=1):
|
| 285 |
+
prompt = gr.Textbox(label="Prompt", value="Realistic mid-aged male image")
|
| 286 |
+
height = gr.Slider(256, 2048, value=1024, step=8, label="Height")
|
| 287 |
+
width = gr.Slider(256, 2048, value=1024, step=8, label="Width")
|
| 288 |
+
steps = gr.Slider(1, 16, value=9, step=1, label="Inference Steps")
|
| 289 |
+
seed = gr.Slider(0, 999999, value=42, step=1, label="Seed")
|
| 290 |
+
btn = gr.Button("Generate", variant="primary")
|
| 291 |
+
|
| 292 |
+
with gr.Column(scale=1):
|
| 293 |
+
output_image = gr.Image(label="Final Output Image")
|
| 294 |
+
latent_gallery = gr.Gallery(label="Latent Evolution", elem_id="latent_gallery").style(grid=[2], height="auto")
|
| 295 |
+
logs_panel = gr.Textbox(label="π Transformer & GPU Logs", lines=25, interactive=False)
|
| 296 |
+
|
| 297 |
+
btn.click(
|
| 298 |
+
generate_image_realtime,
|
| 299 |
+
inputs=[prompt, height, width, steps, seed],
|
| 300 |
+
outputs=[output_image, latent_gallery, logs_panel],
|
| 301 |
+
)
|
| 302 |
+
```
|
| 303 |
+
|
| 304 |
+
demo.launch()
|