Spaces:
Running
on
Zero
Running
on
Zero
Update app_quant_latent.py
Browse files- app_quant_latent.py +107 -66
app_quant_latent.py
CHANGED
|
@@ -245,82 +245,123 @@ log_system_stats("AFTER PIPELINE BUILD")
|
|
| 245 |
|
| 246 |
|
| 247 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
|
|
|
|
|
|
|
| 249 |
|
| 250 |
|
| 251 |
@spaces.GPU
|
| 252 |
def generate_image(prompt, height, width, steps, seed):
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
try:
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
try:
|
| 299 |
-
# move to vae device and dtype
|
| 300 |
-
lat = lat_cpu.to(vae_device).to(vae.dtype)
|
| 301 |
-
|
| 302 |
-
# pipeline used this transform before decoding:
|
| 303 |
-
lat = (lat / vae.config.scaling_factor) + getattr(vae.config, "shift_factor", 0.0)
|
| 304 |
-
|
| 305 |
-
# decode: vae.decode returns (batch, C, H, W)
|
| 306 |
-
img_tensor = vae.decode(lat, return_dict=False)[0]
|
| 307 |
-
|
| 308 |
-
# postprocess with pipeline's image processor to PIL
|
| 309 |
-
pil = img_proc.postprocess(img_tensor.unsqueeze(0), output_type="pil")[0]
|
| 310 |
-
latent_images.append(pil)
|
| 311 |
-
except Exception as e:
|
| 312 |
-
log(f"⚠️ Failed to decode latent step {i}: {e}")
|
| 313 |
except Exception as e:
|
| 314 |
-
|
| 315 |
|
| 316 |
-
|
| 317 |
-
log_system_stats("AFTER INFERENCE")
|
| 318 |
|
| 319 |
-
|
|
|
|
| 320 |
|
| 321 |
-
except Exception as e:
|
| 322 |
-
log(f"❌ Inference error: {e}")
|
| 323 |
-
return None, [], LOGS
|
| 324 |
|
| 325 |
|
| 326 |
|
|
|
|
| 245 |
|
| 246 |
|
| 247 |
|
| 248 |
+
import torch
|
| 249 |
+
from PIL import Image
|
| 250 |
+
import io
|
| 251 |
+
|
| 252 |
|
| 253 |
+
logs = []
|
| 254 |
+
latent_gallery = []
|
| 255 |
|
| 256 |
|
| 257 |
@spaces.GPU
|
| 258 |
def generate_image(prompt, height, width, steps, seed):
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
try:
|
| 262 |
+
device = pipe._execution_device
|
| 263 |
+
generator = torch.Generator(device).manual_seed(int(seed))
|
| 264 |
+
|
| 265 |
+
# 1. Encode prompt
|
| 266 |
+
prompt_embeds, negative_prompt_embeds = pipe.encode_prompt(
|
| 267 |
+
prompt=prompt,
|
| 268 |
+
negative_prompt=None,
|
| 269 |
+
do_classifier_free_guidance=True,
|
| 270 |
+
device=device,
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
batch_size = 1
|
| 274 |
+
num_images_per_prompt = 1
|
| 275 |
+
actual_batch_size = batch_size * num_images_per_prompt
|
| 276 |
+
num_channels_latents = pipe.transformer.in_channels
|
| 277 |
+
|
| 278 |
+
# 2. Prepare latents
|
| 279 |
+
latents = pipe.prepare_latents(
|
| 280 |
+
actual_batch_size,
|
| 281 |
+
num_channels_latents,
|
| 282 |
+
height,
|
| 283 |
+
width,
|
| 284 |
+
torch.float32,
|
| 285 |
+
device,
|
| 286 |
+
generator,
|
| 287 |
+
latents=None,
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
# Repeat prompt embeddings for multiple images
|
| 291 |
+
prompt_embeds = [pe for pe in prompt_embeds for _ in range(num_images_per_prompt)]
|
| 292 |
+
negative_prompt_embeds = [npe for npe in negative_prompt_embeds for _ in range(num_images_per_prompt)]
|
| 293 |
+
|
| 294 |
+
# 3. Prepare timesteps
|
| 295 |
+
image_seq_len = (latents.shape[2] // 2) * (latents.shape[3] // 2)
|
| 296 |
+
mu = calculate_shift(
|
| 297 |
+
image_seq_len,
|
| 298 |
+
pipe.scheduler.config.get("base_image_seq_len", 256),
|
| 299 |
+
pipe.scheduler.config.get("max_image_seq_len", 4096),
|
| 300 |
+
pipe.scheduler.config.get("base_shift", 0.5),
|
| 301 |
+
pipe.scheduler.config.get("max_shift", 1.15),
|
| 302 |
+
)
|
| 303 |
+
pipe.scheduler.sigma_min = 0.0
|
| 304 |
+
timesteps, num_inference_steps = retrieve_timesteps(pipe.scheduler, steps, device, sigmas=None, mu=mu)
|
| 305 |
+
|
| 306 |
+
# 4. Denoising loop
|
| 307 |
+
with pipe.progress_bar(total=num_inference_steps) as progress_bar:
|
| 308 |
+
for i, t in enumerate(timesteps):
|
| 309 |
+
timestep = t.expand(latents.shape[0])
|
| 310 |
+
timestep = (1000 - timestep) / 1000
|
| 311 |
+
|
| 312 |
+
# CFG
|
| 313 |
+
latents_typed = latents.to(pipe.transformer.dtype)
|
| 314 |
+
latent_model_input = latents_typed.repeat(2, 1, 1, 1).unsqueeze(2)
|
| 315 |
+
prompt_embeds_model_input = prompt_embeds + negative_prompt_embeds
|
| 316 |
+
timestep_model_input = timestep.repeat(2)
|
| 317 |
+
|
| 318 |
+
latent_model_input_list = list(latent_model_input.unbind(dim=0))
|
| 319 |
+
model_out_list = pipe.transformer(
|
| 320 |
+
latent_model_input_list, timestep_model_input, prompt_embeds_model_input, return_dict=False
|
| 321 |
+
)[0]
|
| 322 |
+
|
| 323 |
+
# Perform CFG
|
| 324 |
+
pos_out = model_out_list[:actual_batch_size]
|
| 325 |
+
neg_out = model_out_list[actual_batch_size:]
|
| 326 |
+
noise_pred = torch.stack([p + pipe.guidance_scale * (p - n) for p, n in zip(pos_out, neg_out)], dim=0)
|
| 327 |
+
|
| 328 |
+
noise_pred = noise_pred.squeeze(2)
|
| 329 |
+
noise_pred = -noise_pred
|
| 330 |
+
latents = pipe.scheduler.step(noise_pred.to(torch.float32), t, latents, return_dict=False)[0]
|
| 331 |
+
|
| 332 |
+
# Store each latent step for gallery
|
| 333 |
+
latent_gallery.append(latents.clone().detach().cpu())
|
| 334 |
+
progress_bar.update()
|
| 335 |
+
|
| 336 |
+
# 5. Decode final image
|
| 337 |
+
latents_dec = latents.to(pipe.vae.dtype)
|
| 338 |
+
latents_dec = (latents_dec / pipe.vae.config.scaling_factor) + getattr(pipe.vae.config, "shift_factor", 0.0)
|
| 339 |
+
|
| 340 |
+
# Squeeze extra dim if present
|
| 341 |
+
if latents_dec.dim() == 5 and latents_dec.shape[2] == 1:
|
| 342 |
+
latents_dec = latents_dec.squeeze(2)
|
| 343 |
+
|
| 344 |
+
image = pipe.vae.decode(latents_dec, return_dict=False)[0]
|
| 345 |
+
final_image = pipe.image_processor.postprocess(image, output_type="pil")
|
| 346 |
+
|
| 347 |
+
# Decode latent gallery steps to images (optional)
|
| 348 |
+
gallery_images = []
|
| 349 |
+
for idx, lat in enumerate(latent_gallery):
|
| 350 |
try:
|
| 351 |
+
lat = lat.to(pipe.vae.dtype)
|
| 352 |
+
if lat.dim() == 5 and lat.shape[2] == 1:
|
| 353 |
+
lat = lat.squeeze(2)
|
| 354 |
+
img = pipe.vae.decode(lat, return_dict=False)[0]
|
| 355 |
+
img = pipe.image_processor.postprocess(img, output_type="pil")
|
| 356 |
+
gallery_images.append(img[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
except Exception as e:
|
| 358 |
+
logs.append(f"⚠️ Failed to decode latent step {idx}: {e}")
|
| 359 |
|
| 360 |
+
return final_image[0], gallery_images, "\n".join(logs)
|
|
|
|
| 361 |
|
| 362 |
+
except Exception as e:
|
| 363 |
+
return None, [], f"❌ Inference error: {e}"
|
| 364 |
|
|
|
|
|
|
|
|
|
|
| 365 |
|
| 366 |
|
| 367 |
|