Spaces:
Running
on
Zero
Running
on
Zero
Update app_quant_latent.py
Browse files- app_quant_latent.py +265 -190
app_quant_latent.py
CHANGED
|
@@ -5,60 +5,81 @@ import sys
|
|
| 5 |
import platform
|
| 6 |
import diffusers
|
| 7 |
import transformers
|
|
|
|
| 8 |
import os
|
| 9 |
-
import
|
| 10 |
|
| 11 |
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
|
| 12 |
from diffusers import ZImagePipeline, AutoModel
|
| 13 |
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
|
| 14 |
|
| 15 |
# ============================================================
|
| 16 |
-
|
| 17 |
# LOGGING BUFFER
|
| 18 |
-
|
| 19 |
# ============================================================
|
| 20 |
-
|
| 21 |
LOGS = ""
|
| 22 |
def log(msg):
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
|
|
|
|
|
|
|
|
|
|
| 28 |
# ============================================================
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
# ============================================================
|
| 33 |
|
|
|
|
|
|
|
|
|
|
| 34 |
log("===================================================")
|
| 35 |
-
log("π Z-IMAGE-TURBO DEBUGGING +
|
| 36 |
log("===================================================\n")
|
| 37 |
|
| 38 |
-
log(f"π PYTHON VERSION : {sys.version.replace(chr(10),
|
| 39 |
log(f"π PLATFORM : {platform.platform()}")
|
| 40 |
-
log(f"π TORCH VERSION : {torch
|
| 41 |
-
log(f"π TRANSFORMERS VERSION : {transformers
|
| 42 |
-
log(f"π DIFFUSERS VERSION : {diffusers
|
| 43 |
log(f"π CUDA AVAILABLE : {torch.cuda.is_available()}")
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
log(f"π FLASH ATTENTION : {torch.backends.cuda.flash_sdp_enabled()}")
|
| 50 |
-
else:
|
| 51 |
-
raise RuntimeError("β CUDA is REQUIRED but not available.")
|
| 52 |
|
| 53 |
device = "cuda"
|
| 54 |
gpu_id = 0
|
| 55 |
|
| 56 |
# ============================================================
|
| 57 |
-
|
| 58 |
# MODEL SETTINGS
|
| 59 |
-
|
| 60 |
# ============================================================
|
| 61 |
-
|
| 62 |
model_cache = "./weights/"
|
| 63 |
model_id = "Tongyi-MAI/Z-Image-Turbo"
|
| 64 |
torch_dtype = torch.bfloat16
|
|
@@ -72,232 +93,286 @@ log(f"Model Cache Directory : {model_cache}")
|
|
| 72 |
log(f"torch_dtype : {torch_dtype}")
|
| 73 |
log(f"USE_CPU_OFFLOAD : {USE_CPU_OFFLOAD}")
|
| 74 |
|
| 75 |
-
|
| 76 |
|
| 77 |
-
# ROBUST TRANSFORMER INSPECTION FUNCTION
|
| 78 |
|
| 79 |
# ============================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
def inspect_transformer(model, model_name="Transformer"):
|
| 82 |
-
log(f"\nπ {model_name} Architecture Details:")
|
| 83 |
-
try:
|
| 84 |
-
block_attrs = ["transformer_blocks", "blocks", "layers", "encoder_blocks", "model"]
|
| 85 |
-
blocks = None
|
| 86 |
-
for attr in block_attrs:
|
| 87 |
-
blocks = getattr(model, attr, None)
|
| 88 |
-
if blocks is not None:
|
| 89 |
-
break
|
| 90 |
-
|
| 91 |
-
```
|
| 92 |
-
if blocks is None:
|
| 93 |
-
log(f"β οΈ Could not find transformer blocks in {model_name}, skipping detailed block info")
|
| 94 |
-
else:
|
| 95 |
-
try:
|
| 96 |
-
log(f"Number of Transformer Modules : {len(blocks)}")
|
| 97 |
-
for i, block in enumerate(blocks):
|
| 98 |
-
log(f" Block {i}: {block.__class__.__name__}")
|
| 99 |
-
attn_type = getattr(block, "attn", None)
|
| 100 |
-
if attn_type:
|
| 101 |
-
log(f" Attention: {attn_type.__class__.__name__}")
|
| 102 |
-
flash_enabled = getattr(attn_type, "flash", None)
|
| 103 |
-
log(f" FlashAttention Enabled? : {flash_enabled}")
|
| 104 |
-
except Exception as e:
|
| 105 |
-
log(f"β οΈ Error inspecting blocks: {e}")
|
| 106 |
-
|
| 107 |
-
config = getattr(model, "config", None)
|
| 108 |
-
if config:
|
| 109 |
-
log(f"Hidden size: {getattr(config, 'hidden_size', 'N/A')}")
|
| 110 |
-
log(f"Number of attention heads: {getattr(config, 'num_attention_heads', 'N/A')}")
|
| 111 |
-
log(f"Number of layers: {getattr(config, 'num_hidden_layers', 'N/A')}")
|
| 112 |
-
log(f"Intermediate size: {getattr(config, 'intermediate_size', 'N/A')}")
|
| 113 |
-
else:
|
| 114 |
-
log(f"β οΈ No config attribute found in {model_name}")
|
| 115 |
-
except Exception as e:
|
| 116 |
-
log(f"β οΈ Failed to inspect {model_name}: {e}")
|
| 117 |
-
```
|
| 118 |
|
|
|
|
|
|
|
|
|
|
| 119 |
# ============================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
-
# ============================================================
|
| 124 |
|
|
|
|
|
|
|
|
|
|
| 125 |
log("\n===================================================")
|
| 126 |
log("π§ LOADING TRANSFORMER BLOCK")
|
| 127 |
log("===================================================")
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
|
| 150 |
-
|
| 151 |
-
|
|
|
|
| 152 |
|
| 153 |
-
|
| 154 |
|
| 155 |
-
|
|
|
|
| 156 |
|
| 157 |
-
# ============================================================
|
| 158 |
|
|
|
|
|
|
|
|
|
|
| 159 |
log("\n===================================================")
|
| 160 |
log("π§ LOADING TEXT ENCODER")
|
| 161 |
log("===================================================")
|
| 162 |
|
| 163 |
-
|
| 164 |
-
load_in_4bit=True,
|
| 165 |
-
bnb_4bit_quant_type="nf4",
|
| 166 |
-
bnb_4bit_compute_dtype=torch_dtype,
|
| 167 |
-
bnb_4bit_use_double_quant=True,
|
| 168 |
-
)
|
| 169 |
-
log("4-bit Quantization Config (Text Encoder):")
|
| 170 |
-
log(str(quantization_config))
|
| 171 |
-
|
| 172 |
-
text_encoder = AutoModel.from_pretrained(
|
| 173 |
-
model_id,
|
| 174 |
-
cache_dir=model_cache,
|
| 175 |
-
subfolder="text_encoder",
|
| 176 |
-
quantization_config=quantization_config,
|
| 177 |
-
torch_dtype=torch_dtype,
|
| 178 |
-
device_map=device,
|
| 179 |
-
)
|
| 180 |
-
log("β
Text encoder loaded successfully.")
|
| 181 |
-
inspect_transformer(text_encoder, "Text Encoder")
|
| 182 |
|
| 183 |
-
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
-
|
|
|
|
|
|
|
| 187 |
|
| 188 |
-
|
| 189 |
|
| 190 |
-
|
|
|
|
| 191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
log("\n===================================================")
|
| 193 |
-
log("π§ BUILDING
|
| 194 |
log("===================================================")
|
| 195 |
|
| 196 |
-
|
| 197 |
-
model_id,
|
| 198 |
-
transformer=transformer,
|
| 199 |
-
text_encoder=text_encoder,
|
| 200 |
-
torch_dtype=torch_dtype,
|
| 201 |
-
)
|
| 202 |
|
| 203 |
-
|
| 204 |
-
pipe.
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
-
|
|
|
|
|
|
|
| 211 |
|
| 212 |
-
|
| 213 |
|
| 214 |
-
# FUNCTION TO CONVERT LATENTS TO IMAGE
|
| 215 |
|
| 216 |
# ============================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
-
def latent_to_image(latent):
|
| 219 |
try:
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
-
|
|
|
|
|
|
|
| 229 |
|
| 230 |
-
# REAL-TIME INFERENCE FUNCTION
|
| 231 |
|
| 232 |
-
# ============================================================
|
| 233 |
|
| 234 |
@spaces.GPU
|
| 235 |
-
def
|
| 236 |
global LOGS
|
| 237 |
-
LOGS = ""
|
|
|
|
|
|
|
| 238 |
log("===================================================")
|
| 239 |
-
log("π¨ RUNNING
|
| 240 |
log("===================================================")
|
| 241 |
-
|
| 242 |
-
log(f"Resolution : {width} x {height}")
|
| 243 |
-
log(f"Steps : {steps}")
|
| 244 |
-
log(f"Seed : {seed}")
|
| 245 |
-
|
| 246 |
-
```
|
| 247 |
-
generator = torch.Generator(device).manual_seed(seed)
|
| 248 |
-
latent_history = []
|
| 249 |
-
|
| 250 |
-
# Define callback to save latents and GPU info
|
| 251 |
-
def save_latents(step, timestep, latents):
|
| 252 |
-
latent_history.append(latents.detach().clone())
|
| 253 |
-
gpu_mem = torch.cuda.memory_allocated(0)/1e9
|
| 254 |
-
log(f"Step {step} - GPU Memory Used: {gpu_mem:.2f} GB")
|
| 255 |
-
|
| 256 |
-
# Yield images step-by-step
|
| 257 |
-
for step, img in pipe(
|
| 258 |
-
prompt=prompt,
|
| 259 |
-
height=height,
|
| 260 |
-
width=width,
|
| 261 |
-
num_inference_steps=steps,
|
| 262 |
-
guidance_scale=0.0,
|
| 263 |
-
generator=generator,
|
| 264 |
-
callback=save_latents,
|
| 265 |
-
callback_steps=1
|
| 266 |
-
).iter():
|
| 267 |
-
current_latent = latent_history[-1] if latent_history else None
|
| 268 |
-
latent_images = [latent_to_image(l) for l in latent_history if l is not None]
|
| 269 |
-
yield img, latent_images, LOGS
|
| 270 |
-
```
|
| 271 |
|
| 272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
-
# GRADIO UI
|
| 275 |
|
|
|
|
|
|
|
| 276 |
# ============================================================
|
| 277 |
|
| 278 |
with gr.Blocks(title="Z-Image-Turbo Generator") as demo:
|
| 279 |
-
gr.Markdown("# **π Z-Image-Turbo β
|
| 280 |
|
| 281 |
-
```
|
| 282 |
with gr.Row():
|
| 283 |
with gr.Column(scale=1):
|
| 284 |
prompt = gr.Textbox(label="Prompt", value="Realistic mid-aged male image")
|
| 285 |
height = gr.Slider(256, 2048, value=1024, step=8, label="Height")
|
| 286 |
width = gr.Slider(256, 2048, value=1024, step=8, label="Width")
|
| 287 |
-
steps = gr.Slider(1,
|
| 288 |
-
seed = gr.
|
| 289 |
-
|
| 290 |
|
| 291 |
with gr.Column(scale=1):
|
| 292 |
-
|
| 293 |
-
latent_gallery = gr.Gallery(label="Latent
|
| 294 |
-
|
| 295 |
|
| 296 |
-
|
| 297 |
-
|
| 298 |
inputs=[prompt, height, width, steps, seed],
|
| 299 |
-
outputs=[
|
| 300 |
)
|
| 301 |
-
```
|
| 302 |
|
| 303 |
-
|
|
|
|
|
|
| 5 |
import platform
|
| 6 |
import diffusers
|
| 7 |
import transformers
|
| 8 |
+
import psutil
|
| 9 |
import os
|
| 10 |
+
import time
|
| 11 |
|
| 12 |
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
|
| 13 |
from diffusers import ZImagePipeline, AutoModel
|
| 14 |
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
|
| 15 |
|
| 16 |
# ============================================================
|
|
|
|
| 17 |
# LOGGING BUFFER
|
|
|
|
| 18 |
# ============================================================
|
|
|
|
| 19 |
LOGS = ""
|
| 20 |
def log(msg):
|
| 21 |
+
global LOGS
|
| 22 |
+
print(msg)
|
| 23 |
+
LOGS += msg + "\n"
|
| 24 |
+
return msg
|
| 25 |
|
| 26 |
+
|
| 27 |
+
# ============================================================
|
| 28 |
+
# SYSTEM METRICS β LIVE GPU + CPU MONITORING
|
| 29 |
# ============================================================
|
| 30 |
+
def log_system_stats(tag=""):
|
| 31 |
+
try:
|
| 32 |
+
log(f"\n===== π₯ SYSTEM STATS {tag} =====")
|
| 33 |
|
| 34 |
+
# ============= GPU STATS =============
|
| 35 |
+
if torch.cuda.is_available():
|
| 36 |
+
allocated = torch.cuda.memory_allocated(0) / 1e9
|
| 37 |
+
reserved = torch.cuda.memory_reserved(0) / 1e9
|
| 38 |
+
total = torch.cuda.get_device_properties(0).total_memory / 1e9
|
| 39 |
+
free = total - allocated
|
| 40 |
+
|
| 41 |
+
log(f"π GPU Total : {total:.2f} GB")
|
| 42 |
+
log(f"π GPU Allocated : {allocated:.2f} GB")
|
| 43 |
+
log(f"π GPU Reserved : {reserved:.2f} GB")
|
| 44 |
+
log(f"π GPU Free : {free:.2f} GB")
|
| 45 |
+
|
| 46 |
+
# ============= CPU STATS ============
|
| 47 |
+
cpu = psutil.cpu_percent()
|
| 48 |
+
ram_used = psutil.virtual_memory().used / 1e9
|
| 49 |
+
ram_total = psutil.virtual_memory().total / 1e9
|
| 50 |
+
|
| 51 |
+
log(f"π§ CPU Usage : {cpu}%")
|
| 52 |
+
log(f"π§ RAM Used : {ram_used:.2f} GB / {ram_total:.2f} GB")
|
| 53 |
+
|
| 54 |
+
except Exception as e:
|
| 55 |
+
log(f"β οΈ Failed to log system stats: {e}")
|
| 56 |
|
|
|
|
| 57 |
|
| 58 |
+
# ============================================================
|
| 59 |
+
# ENVIRONMENT INFO
|
| 60 |
+
# ============================================================
|
| 61 |
log("===================================================")
|
| 62 |
+
log("π Z-IMAGE-TURBO DEBUGGING + LIVE METRIC LOGGER")
|
| 63 |
log("===================================================\n")
|
| 64 |
|
| 65 |
+
log(f"π PYTHON VERSION : {sys.version.replace(chr(10),' ')}")
|
| 66 |
log(f"π PLATFORM : {platform.platform()}")
|
| 67 |
+
log(f"π TORCH VERSION : {torch.__version__}")
|
| 68 |
+
log(f"π TRANSFORMERS VERSION : {transformers.__version__}")
|
| 69 |
+
log(f"π DIFFUSERS VERSION : {diffusers.__version__}")
|
| 70 |
log(f"π CUDA AVAILABLE : {torch.cuda.is_available()}")
|
| 71 |
|
| 72 |
+
log_system_stats("AT STARTUP")
|
| 73 |
+
|
| 74 |
+
if not torch.cuda.is_available():
|
| 75 |
+
raise RuntimeError("β CUDA Required")
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
device = "cuda"
|
| 78 |
gpu_id = 0
|
| 79 |
|
| 80 |
# ============================================================
|
|
|
|
| 81 |
# MODEL SETTINGS
|
|
|
|
| 82 |
# ============================================================
|
|
|
|
| 83 |
model_cache = "./weights/"
|
| 84 |
model_id = "Tongyi-MAI/Z-Image-Turbo"
|
| 85 |
torch_dtype = torch.bfloat16
|
|
|
|
| 93 |
log(f"torch_dtype : {torch_dtype}")
|
| 94 |
log(f"USE_CPU_OFFLOAD : {USE_CPU_OFFLOAD}")
|
| 95 |
|
| 96 |
+
log_system_stats("BEFORE TRANSFORMER LOAD")
|
| 97 |
|
|
|
|
| 98 |
|
| 99 |
# ============================================================
|
| 100 |
+
# FUNCTION TO CONVERT LATENTS TO IMAGE
|
| 101 |
+
# ============================================================
|
| 102 |
+
def latent_to_image(latent):
|
| 103 |
+
try:
|
| 104 |
+
img_tensor = pipe.vae.decode(latent)
|
| 105 |
+
img_tensor = (img_tensor / 2 + 0.5).clamp(0, 1)
|
| 106 |
+
pil_img = T.ToPILImage()(img_tensor[0])
|
| 107 |
+
return pil_img
|
| 108 |
+
except Exception as e:
|
| 109 |
+
log(f"β οΈ Failed to decode latent: {e}")
|
| 110 |
+
return None
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
+
|
| 114 |
+
# ============================================================
|
| 115 |
+
# SAFE TRANSFORMER INSPECTION
|
| 116 |
# ============================================================
|
| 117 |
+
def inspect_transformer(model, name):
|
| 118 |
+
log(f"\nπ Inspecting {name}")
|
| 119 |
+
try:
|
| 120 |
+
candidates = ["transformer_blocks", "blocks", "layers", "encoder", "model"]
|
| 121 |
+
blocks = None
|
| 122 |
|
| 123 |
+
for attr in candidates:
|
| 124 |
+
if hasattr(model, attr):
|
| 125 |
+
blocks = getattr(model, attr)
|
| 126 |
+
break
|
| 127 |
+
|
| 128 |
+
if blocks is None:
|
| 129 |
+
log(f"β οΈ No block structure found in {name}")
|
| 130 |
+
return
|
| 131 |
+
|
| 132 |
+
if hasattr(blocks, "__len__"):
|
| 133 |
+
log(f"Total Blocks = {len(blocks)}")
|
| 134 |
+
else:
|
| 135 |
+
log("β οΈ Blocks exist but are not iterable")
|
| 136 |
+
|
| 137 |
+
for i in range(min(10, len(blocks) if hasattr(blocks, "__len__") else 0)):
|
| 138 |
+
log(f"Block {i} = {blocks[i].__class__.__name__}")
|
| 139 |
+
|
| 140 |
+
except Exception as e:
|
| 141 |
+
log(f"β οΈ Transformer inspect error: {e}")
|
| 142 |
|
|
|
|
| 143 |
|
| 144 |
+
# ============================================================
|
| 145 |
+
# LOAD TRANSFORMER β WITH LIVE STATS
|
| 146 |
+
# ============================================================
|
| 147 |
log("\n===================================================")
|
| 148 |
log("π§ LOADING TRANSFORMER BLOCK")
|
| 149 |
log("===================================================")
|
| 150 |
|
| 151 |
+
log("π Logging memory before load:")
|
| 152 |
+
log_system_stats("START TRANSFORMER LOAD")
|
| 153 |
+
|
| 154 |
+
try:
|
| 155 |
+
quant_cfg = DiffusersBitsAndBytesConfig(
|
| 156 |
+
load_in_4bit=True,
|
| 157 |
+
bnb_4bit_quant_type="nf4",
|
| 158 |
+
bnb_4bit_compute_dtype=torch_dtype,
|
| 159 |
+
bnb_4bit_use_double_quant=True,
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
transformer = AutoModel.from_pretrained(
|
| 163 |
+
model_id,
|
| 164 |
+
cache_dir=model_cache,
|
| 165 |
+
subfolder="transformer",
|
| 166 |
+
quantization_config=quant_cfg,
|
| 167 |
+
torch_dtype=torch_dtype,
|
| 168 |
+
device_map=device,
|
| 169 |
+
)
|
| 170 |
+
log("β
Transformer loaded successfully.")
|
| 171 |
|
| 172 |
+
except Exception as e:
|
| 173 |
+
log(f"β Transformer load failed: {e}")
|
| 174 |
+
transformer = None
|
| 175 |
|
| 176 |
+
log_system_stats("AFTER TRANSFORMER LOAD")
|
| 177 |
|
| 178 |
+
if transformer:
|
| 179 |
+
inspect_transformer(transformer, "Transformer")
|
| 180 |
|
|
|
|
| 181 |
|
| 182 |
+
# ============================================================
|
| 183 |
+
# LOAD TEXT ENCODER
|
| 184 |
+
# ============================================================
|
| 185 |
log("\n===================================================")
|
| 186 |
log("π§ LOADING TEXT ENCODER")
|
| 187 |
log("===================================================")
|
| 188 |
|
| 189 |
+
log_system_stats("START TEXT ENCODER LOAD")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
+
try:
|
| 192 |
+
quant_cfg2 = TransformersBitsAndBytesConfig(
|
| 193 |
+
load_in_4bit=True,
|
| 194 |
+
bnb_4bit_quant_type="nf4",
|
| 195 |
+
bnb_4bit_compute_dtype=torch_dtype,
|
| 196 |
+
bnb_4bit_use_double_quant=True,
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
text_encoder = AutoModel.from_pretrained(
|
| 200 |
+
model_id,
|
| 201 |
+
cache_dir=model_cache,
|
| 202 |
+
subfolder="text_encoder",
|
| 203 |
+
quantization_config=quant_cfg2,
|
| 204 |
+
torch_dtype=torch_dtype,
|
| 205 |
+
device_map=device,
|
| 206 |
+
)
|
| 207 |
+
log("β
Text encoder loaded successfully.")
|
| 208 |
|
| 209 |
+
except Exception as e:
|
| 210 |
+
log(f"β Text encoder load failed: {e}")
|
| 211 |
+
text_encoder = None
|
| 212 |
|
| 213 |
+
log_system_stats("AFTER TEXT ENCODER LOAD")
|
| 214 |
|
| 215 |
+
if text_encoder:
|
| 216 |
+
inspect_transformer(text_encoder, "Text Encoder")
|
| 217 |
|
| 218 |
+
|
| 219 |
+
# ============================================================
|
| 220 |
+
# BUILD PIPELINE
|
| 221 |
+
# ============================================================
|
| 222 |
log("\n===================================================")
|
| 223 |
+
log("π§ BUILDING PIPELINE")
|
| 224 |
log("===================================================")
|
| 225 |
|
| 226 |
+
log_system_stats("START PIPELINE BUILD")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
+
try:
|
| 229 |
+
pipe = ZImagePipeline.from_pretrained(
|
| 230 |
+
model_id,
|
| 231 |
+
transformer=transformer,
|
| 232 |
+
text_encoder=text_encoder,
|
| 233 |
+
torch_dtype=torch_dtype,
|
| 234 |
+
)
|
| 235 |
+
pipe.to(device)
|
| 236 |
+
log("β
Pipeline built successfully.")
|
| 237 |
|
| 238 |
+
except Exception as e:
|
| 239 |
+
log(f"β Pipeline build failed: {e}")
|
| 240 |
+
pipe = None
|
| 241 |
|
| 242 |
+
log_system_stats("AFTER PIPELINE BUILD")
|
| 243 |
|
|
|
|
| 244 |
|
| 245 |
# ============================================================
|
| 246 |
+
# INFERENCE
|
| 247 |
+
# ============================================================
|
| 248 |
+
@spaces.GPU
|
| 249 |
+
def generate_image(prompt, height, width, steps, seed):
|
| 250 |
+
global LOGS
|
| 251 |
+
LOGS = "" # reset logs
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
log("===================================================")
|
| 255 |
+
log("π¨ RUNNING INFERENCE")
|
| 256 |
+
log("===================================================")
|
| 257 |
+
log_system_stats("BEFORE INFERENCE")
|
| 258 |
|
|
|
|
| 259 |
try:
|
| 260 |
+
generator = torch.Generator(device).manual_seed(seed)
|
| 261 |
+
latent_history = []
|
| 262 |
+
|
| 263 |
+
# Callback to save latents and GPU info
|
| 264 |
+
def save_latents(step, timestep, latents):
|
| 265 |
+
latent_history.append(latents.detach().clone())
|
| 266 |
+
gpu_mem = torch.cuda.memory_allocated(0)/1e9
|
| 267 |
+
log(f"Step {step} - GPU Memory Used: {gpu_mem:.2f} GB")
|
| 268 |
+
|
| 269 |
+
# Step 3: Loop over pipeline for step-wise generation
|
| 270 |
+
for step, img in pipe(
|
| 271 |
+
prompt=prompt,
|
| 272 |
+
height=height,
|
| 273 |
+
width=width,
|
| 274 |
+
num_inference_steps=steps,
|
| 275 |
+
guidance_scale=0.0,
|
| 276 |
+
generator=generator,
|
| 277 |
+
callback=save_latents,
|
| 278 |
+
callback_steps=1
|
| 279 |
+
).iter():
|
| 280 |
+
# Optionally: yield intermediate images or just store latents
|
| 281 |
+
current_latent = latent_history[-1] if latent_history else None
|
| 282 |
+
# You can process current_latent here if needed
|
| 283 |
+
|
| 284 |
+
log("β
Inference finished.")
|
| 285 |
+
log_system_stats("AFTER INFERENCE")
|
| 286 |
+
|
| 287 |
+
# Return final image + logs
|
| 288 |
+
return img, LOGS
|
| 289 |
|
| 290 |
+
except Exception as e:
|
| 291 |
+
log(f"β Inference error: {e}")
|
| 292 |
+
return None, LOGS
|
| 293 |
|
|
|
|
| 294 |
|
|
|
|
| 295 |
|
| 296 |
@spaces.GPU
|
| 297 |
+
def generate_image(prompt, height, width, steps, seed):
|
| 298 |
global LOGS
|
| 299 |
+
LOGS = "" # reset logs
|
| 300 |
+
|
| 301 |
+
|
| 302 |
log("===================================================")
|
| 303 |
+
log("π¨ RUNNING INFERENCE")
|
| 304 |
log("===================================================")
|
| 305 |
+
log_system_stats("BEFORE INFERENCE")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
|
| 307 |
+
try:
|
| 308 |
+
generator = torch.Generator(device).manual_seed(seed)
|
| 309 |
+
latent_history = []
|
| 310 |
+
|
| 311 |
+
# Callback to save latents and GPU info
|
| 312 |
+
def save_latents(step, timestep, latents):
|
| 313 |
+
latent_history.append(latents.detach().clone())
|
| 314 |
+
gpu_mem = torch.cuda.memory_allocated(0)/1e9
|
| 315 |
+
log(f"Step {step} - GPU Memory Used: {gpu_mem:.2f} GB")
|
| 316 |
+
|
| 317 |
+
# Step-wise loop just for latent capture
|
| 318 |
+
for step, _ in pipe(
|
| 319 |
+
prompt=prompt,
|
| 320 |
+
height=height,
|
| 321 |
+
width=width,
|
| 322 |
+
num_inference_steps=steps,
|
| 323 |
+
guidance_scale=0.0,
|
| 324 |
+
generator=generator,
|
| 325 |
+
callback=save_latents,
|
| 326 |
+
callback_steps=1
|
| 327 |
+
).iter():
|
| 328 |
+
pass # only capturing latents, ignoring intermediate images
|
| 329 |
+
|
| 330 |
+
# Original final image generation
|
| 331 |
+
output = pipe(
|
| 332 |
+
prompt=prompt,
|
| 333 |
+
height=height,
|
| 334 |
+
width=width,
|
| 335 |
+
num_inference_steps=steps,
|
| 336 |
+
guidance_scale=0.0,
|
| 337 |
+
generator=generator,
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
log("β
Inference finished.")
|
| 341 |
+
log_system_stats("AFTER INFERENCE")
|
| 342 |
+
|
| 343 |
+
return output.images[0], latent_history, LOGS
|
| 344 |
+
|
| 345 |
+
except Exception as e:
|
| 346 |
+
log(f"β Inference error: {e}")
|
| 347 |
+
return None, None, LOGS
|
| 348 |
|
|
|
|
| 349 |
|
| 350 |
+
# ============================================================
|
| 351 |
+
# UI
|
| 352 |
# ============================================================
|
| 353 |
|
| 354 |
with gr.Blocks(title="Z-Image-Turbo Generator") as demo:
|
| 355 |
+
gr.Markdown("# **π Z-Image-Turbo β Final Image & Latents**")
|
| 356 |
|
|
|
|
| 357 |
with gr.Row():
|
| 358 |
with gr.Column(scale=1):
|
| 359 |
prompt = gr.Textbox(label="Prompt", value="Realistic mid-aged male image")
|
| 360 |
height = gr.Slider(256, 2048, value=1024, step=8, label="Height")
|
| 361 |
width = gr.Slider(256, 2048, value=1024, step=8, label="Width")
|
| 362 |
+
steps = gr.Slider(1, 50, value=20, step=1, label="Inference Steps")
|
| 363 |
+
seed = gr.Number(value=42, label="Seed")
|
| 364 |
+
run_btn = gr.Button("Generate Image")
|
| 365 |
|
| 366 |
with gr.Column(scale=1):
|
| 367 |
+
final_image = gr.Image(label="Final Image")
|
| 368 |
+
latent_gallery = gr.Gallery(label="Latent Steps").style(grid=[4], height="256px")
|
| 369 |
+
logs_box = gr.Textbox(label="Logs", lines=15)
|
| 370 |
|
| 371 |
+
run_btn.click(
|
| 372 |
+
generate_image,
|
| 373 |
inputs=[prompt, height, width, steps, seed],
|
| 374 |
+
outputs=[final_image, latent_gallery, logs_box]
|
| 375 |
)
|
|
|
|
| 376 |
|
| 377 |
+
|
| 378 |
+
demo.launch()
|